Skip to main content

A Stratification of the Semistable Locus

  • Chapter
  • First Online:
  • 1022 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2122))

Abstract

Consider the following sublocus of \(\mathrm{Ch}^{-1}(\mathrm{Chow}_{d}^{\mathit{ss}}) \subset \mathrm{Hilb}_{d}\):

$$\displaystyle{ \mathrm{Ch}^{-1}(\mathrm{Chow}_{ d}^{\mathit{ss}})^{o}:=\{ [X \subset \mathbb{P}^{r}] \in \mathrm{Ch}^{-1}(\mathrm{Chow}_{ d}^{\mathit{ss}}) \subset \mathrm{Hilb}_{ d}\::\: X\text{ is connected}\}. }$$
(10.1)

If d > 2(2g − 2), the condition of being connected is both closed and open in \(\mathrm{Ch}^{-1}(\mathrm{Chow}_{d}^{\mathit{ss}})\): it is closed because of its natural interpretation as a topological condition; it is open because \([X \subset \mathbb{P}^{r}] \in \mathrm{Ch}^{-1}(\mathrm{Chow}_{d}^{\mathit{ss}})\) is a reduced curve by the Potential pseudo-stability Theorem 5.1 and therefore X is connected if and only if \(h^{0}(X,\mathcal{O}_{X}) = 1\), which is an open condition by upper-semicontinuity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here there is an abuse of notation: W X, ρ (m) is referred to \([X \subset \mathbb{P}^{r}]\), while \(W_{X,\rho ^{{\ast}}}(m)\) is referred to \([X\stackrel{\vert \phi ^{{\ast}}L\vert }{\hookrightarrow }\mathbb{P}^{r}]\).

References

  1. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 21 (Springer, Berlin, 1990)

    Google Scholar 

  2. L. Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves. J. Am. Math. Soc. 7, 589–660 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, vol. 52 (Springer, New York/Heidelberg, 1977)

    Google Scholar 

  4. B. Hassett, D. Hyeon, Log canonical models for the moduli space of curves: the first flip. Ann. Math. (2) 177, 911–968 (2013)

    Google Scholar 

  5. S.L. Kleiman, The Picard scheme, in Fundamental Algebraic Geometry. Mathematical Surveys and Monographs, vol. 123 (American Mathematical Society, Providence, 2005), pp. 235–321

    Google Scholar 

  6. M. Raynaud, Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math. 38, 27–76 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bini, G., Felici, F., Melo, M., Viviani, F. (2014). A Stratification of the Semistable Locus. In: Geometric Invariant Theory for Polarized Curves. Lecture Notes in Mathematics, vol 2122. Springer, Cham. https://doi.org/10.1007/978-3-319-11337-1_10

Download citation

Publish with us

Policies and ethics