Skip to main content

Materials Science Approaches Towards Noise and Vibration Abatement in Nonstationary Friction Processes

  • Chapter
  • First Online:
  • 1731 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 212))

Abstract

The authors give technical characteristics and classifications of frictional materials for brakes and transmissions used in vehicles today. The investigations are reviewed intended to optimize structure and composition of friction materials for minimizing or eliminating self-oscillations, HF noise and LF judder. The principal parameters of frictional materials decisive in generating noise and vibration by the frictional materials in respective frequency ranges are analyzed. It is underlined that the approaches resting on the materials science standpoints are highly efficient in deciding noise and vibration reduction problems in tribosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. I.V. Kragelskii, V. Gitis, Friction-Induced Self-Oscillations (Nauka, Moscow, 1987), p. 184

    Google Scholar 

  2. V.P.Sergienko, S.N. Bukharov, A.V. Kupreev, Noise and vibration in brake systems of vehicles. Part 1: experimental procedures (review). J. Frction Wear 29(3), 234–241 (2008)

    Google Scholar 

  3. W. Liu, J. Pfeifer, Introductions to Brake Noise & Vibration, Honeywell Friction Materials [Electronic resource]. http://www.sae.org/events/bce/honeywell-liu.pdt

  4. H. Ouyang, J.E. Mottershead, Friction-induced parametric resonances in disc: effect of a negative friction-velocity relationship. J. Sound Vib. 209(2), 251–264 (1998)

    Article  Google Scholar 

  5. H. Jacobbson, Aspects of disc brake judder. Proc. Int. Mech. Eng. Part D: J. Automobile Eng. 217, 419–430 (2003)

    Google Scholar 

  6. A.K. Pogosyan, V.K. Makaryan, G.S. Gagyan, Design of vibration stability of friction pairs in the disc-block brake systems of machines. J. Friction Wear 12(2), 225–231 (1991)

    Google Scholar 

  7. A.K. Pogosyan, V.K. Makaryan, A.R. Yagubyan, Sound as an ecological characteristic of new frictional materials. J. Friction Wear 14(3), 539–543 (1993)

    Google Scholar 

  8. M.R. North, Disc brake squeal. Proceedings Conferences on Brake of Road Vehicles, Institution of Mechanical Engineers, C38/76, pp. 169–176 (1976)

    Google Scholar 

  9. M. Nishiwaki et al., A Study on Friction Materials for Brake Squeal Reduction by Nanotechnology. SAE paper 2008-01-2581 (2008)

    Google Scholar 

  10. H. Jang, Compositional effects of the brake friction material on creep groan phenomena. Wear 251, 1477–1483 (2001)

    Article  Google Scholar 

  11. Y. Han, X. Tian, Y. Yin, Effects of ceramic fiber on the friction performance of automotive brake lining materials. Tribol. Trans. 51 (2008)

    Google Scholar 

  12. Y. Handa, T. Kato, Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads. Tribol. Trans. 39, 346–353

    Google Scholar 

  13. H. Abendroth, Worldwide brake—friction material testing standards, challenges, trends. Proceedings of 7th International Symposium Yarofri, Friction Products and Materials, Yaroslavl, 9–11 Sept 2008 pp. 140–150

    Google Scholar 

  14. H. Abendroth, B. Wernitz, The integrated test concept: Dyno-vehicle, performance-noise, B. SAE Paper, 2000-01-2774 (2000)

    Google Scholar 

  15. Bo N.J. Persson, Sliding Friction: Physical Principals and Applications (Springer, Berlin, 1998), p. 365

    Google Scholar 

  16. Yu.M. Pleskachevskii, V.P. Sergienko, Friction materials with polymeric matrix: promises in research, state of the art and market. Sci. Innov. 5(27), 47–53 (2005)

    Google Scholar 

  17. A. Ilintskii, Asbestos. Ind. Saf. Soc. Insur. (7), 20–22 (1997)

    Google Scholar 

  18. A.I. Sviridenok, S.A. Chizhik, M.I. Petrokovets, Mechanics of the Discrete Friction Contact (Science and Technique, Minsk, 1990), p. 272

    Google Scholar 

  19. A.A. Dmitrovich, G.S. Syroezhko, Sintered frictional materials, in Powder Metallurgy and Protective Coatings in Engineering and Instrument-Making. (Minsk, 2003) pp. 22–29

    Google Scholar 

  20. Brake Noise, Vibration, and Hardness: Technology Driving Customer Satisfaction [Electronic resource]. http://www.akebonobrakes.com

  21. V. Vadari, M. Jackson, An Experimental Investigation of Disk Brake Creep-Groan in Vehicles and Brake Dynamometer Correlation. SAE Paper, 1999-01-3408 (1999)

    Google Scholar 

  22. Patent No 61-258886, Japan, 1985

    Google Scholar 

  23. Patent No 4702762/05, USSR, 1989

    Google Scholar 

  24. Patent No 2173691, Russia, 2001

    Google Scholar 

  25. Patent No 1460977, USSR, 1985

    Google Scholar 

  26. Patent No 4678818, USA, 1985

    Google Scholar 

  27. Patent No 94036316, Russia, 1997

    Google Scholar 

  28. Patent No 96113355, Russia, 1997

    Google Scholar 

  29. Patent No 62-149786, Japan, 1985

    Google Scholar 

  30. Patent No 60-203678, Japan, 1984

    Google Scholar 

  31. Patent No 4690960, USA, 1985

    Google Scholar 

  32. H. Jang, Effects of ingredients on tribological characteristics of a brake lining. An experimental case study. Wear 258, 1682–1687 (2005)

    Article  Google Scholar 

  33. S. Ganguly, K. Pastor, G. Folta, R. Lanka et al., Reduction of Groan and Grind Noise in Brake Systems. SAE Paper, 2011-01-2364 (2011)

    Google Scholar 

  34. M.G. Jacko, S.K. Rhee, Brake Linings and Clutch Facings, Kirk-Othmer Encyclopedis of Chemical Technology, vol. 4, 4th edn. (Wiley, New York, 1992), p. 523

    Google Scholar 

  35. I.G. Zedgindze, Experimental Design for Investigation of Multicomponent Systems (Nauka, Moscow, 1976), p. 390

    Google Scholar 

  36. J.A. Cornell, Experimental Design with Mixtures: Design, Models, and the Analysis of Mixture Data, 2nd edn. (Wiley, New York, 1990)

    Google Scholar 

  37. D.C. Montgomery, Design and Analysis of Experiments, 3rd edn. (Wiley, New York, 1991)

    MATH  Google Scholar 

  38. V.I. Kolesnikov, V.P. Sergienko, V.V. Zhuk, V.A. Savonchik, S.N. Bukharov, Friction joints: investigation of tribological phenomena in nonstationary processes and some optimizing solutions. Proceedings of 7-th International Symposium on Friction Products and Materials. Yaroslavl, 9–11 Sept 2008, pp. 25–33

    Google Scholar 

  39. V.P. Sergienko, S.N. Bukharov, Noise and Vibration in Frictional Joints of Machines. Tribologia 217(1), 129–137 (2008)

    Google Scholar 

  40. V.P. Sergienko, N.K. Myshkin, S.N. Bukharov, O.S. Yarosh, Investigations of the effect of friction material composition on vibroacoustic activity of tribojoints, in Proceedings of International Science Conferences Actual Problems of Tribology. Samara (Russia), 6–8 June 2007 pp. 266–278

    Google Scholar 

  41. V.P. Sergienko, S.N. Bukharov, A.V. Kupreev, A study of the influence of structure of composite materials on the vibration of frictional pairs, in Proceedings of 10th International Conferences on Tribology. Kragujevac, Serbia, 19–21 June 2007, pp. 85–88

    Google Scholar 

  42. V.P. Sergienko, Frictional materials with a polymer matrix: research directions and results attained. Tribologia 5(202), 31–40 (2005)

    Google Scholar 

  43. V.P. Sergienko, S.N. Bukharov, Formula and structure effect of frictional materials on their damping properties and NVH performance of friction joints. SAE Paper, 2009-01-3016

    Google Scholar 

  44. V.I. Kolesnikov, V.P. Sergienko, S.N. Sychev, S.N. Bukharov, Optimization of dynamic characteristics of friction materials and their role in friction-induced noise generation. Bull. S. Cent. RAN 5(4), 3–14 (2009)

    Google Scholar 

  45. V.P. Sergienko, S.N. Bukharov, Materials science approach to reduce vibration and noise in the non-stationary friction processes, in Proceedings of 8-th International Symposium on Friction Products and Materials. Yaroslavl, 28–30 Sept 2010, pp. 81–86

    Google Scholar 

  46. V.P. Sergienko, S.N. Bukharov, Vibroacoustic activity of tribopairs depending on dynamic characteristics of their materials. Mech. Mach. Mech. Mater. 9(4), 27–33 (2009)

    Google Scholar 

  47. J.R. Barber, Thermoelastic instabilities in the sliding of conforming solids. Proc. Royal Soc. Ser. A 312, 381–394 (1969)

    Google Scholar 

  48. T. Hodges, Development of refined friction materials, in Proceedings of 5th International Symposium of Friction Products and Materials, Yaroslavl, 2003, pp. 203–208

    Google Scholar 

  49. H. Inoue, Analysis of brake judder caused by thermal deformation of brake disc rotors, in Proceedings of 21st FISITA Congress, Belgrade, 1986, pp. 213–219, paper 865131

    Google Scholar 

  50. T.K. Kao, J.W. Richmond, M.W. Moore, The application of predictive techniques to study thermo-elastic instability of brakes. SAE Paper, 942087 (1994)

    Google Scholar 

  51. T. Steffen, R. Bruns, Hotspotsbildung bei PkwBremsscheiben. Automobiltechnische Zeitschrift 100, 408–413 (1998)

    Google Scholar 

  52. S. Koetniyom, P.C. Brooks, D.C. Barton, Finite element prediction of inelastic strain accumulation in castiron brake rotors, in Proceedings of International Conferences on Automotive Braking. Technologies for the 21st Century, Brakes 2000, pp. 139–148

    Google Scholar 

  53. Thermal Judder. Eurac technical bulletin 00034056. [Electronic resource]—Mode of access: www.eurac-group.com/documents/thermaljudder.doc

  54. S. Gassman, H.G. Engel, Excitation and transfer mechanism of brake judder. SAE Paper, 931880, (1993)

    Google Scholar 

  55. M.D. Hudson, R.L. Ruhl, Ventilated brake rotor air flow investigation. SAE Paper, 971033, (1997)

    Google Scholar 

  56. M. Donley, D. Riesland, Brake Groan Simulation for a McPherson Strut Type Suspension. SAE Paper, 2003-01-1627 (2003)

    Google Scholar 

  57. D.G. Grieve, D.C. Barton, D.A. Crolla, J.K. Buckingham, Design of a lightweight automotive brake disc using finite element and Taguchi techniques. Proc. Instn Mech. Eng. Part D: J. Automobile Eng. 212, 245–254 (1998)

    Article  Google Scholar 

  58. R. Krupka, A. Kienzle, Fiber reinforced ceramic composite for brake discs. SAE Paper, 2000-01-2761, (2000)

    Google Scholar 

  59. R.H. Martin, S. Bowron, Composite materials in transport friction applications, in Brakes 2000, International Conference on Automotive Braking—Technologies for the 21st Century, London, 2000, pp. 207–216

    Google Scholar 

  60. K. Augsburg, H. Brunner, J. Grochowicz, Untersuchungen zum Rubbelverhalten von Pkw-Schwimmsattelbremser. Automobiltechnische Zeitschrift 101 (1999)

    Google Scholar 

  61. R. Avilés, G. Hennequet, A. Hernández, L.I. Llorente, Low frequency vibrations in disc brakes at high car speed. Part I: experimental approach. Int. J. Veh. Des. 16(6) 542–555 (1995)

    Google Scholar 

  62. A. De Vries, M. Wagner, The Brake Judder Phenomenon. SAE Paper, 920554 (1992)

    Google Scholar 

  63. P.C. Brooks, D. Barton, D.A. Crolla, A.M. Lang, D.R. Schafer, A study of disc brake judder using a fully coupled thermo-mechanical finite element model, in Proceedings of 25th FISITA Congress, Beijing, 1994, pp. 340–349

    Google Scholar 

  64. T.K. Kao, J.W. Richmond, A. Douarre, Brake disc hot spotting and thermal judder: an experimental and finite element study. Int. J. Veh. Des. 23(3/4), 276–296 (2000)

    Google Scholar 

  65. B.B. Palmer, M.H. Weintraub, The role of engineered cashew particles on performance, in Proceedings of International Conferences on Automotive Braking. Technologies for the 21st Century, Brakes 2000, pp. 185–195

    Google Scholar 

  66. J.W. Richmond, T.K. Kao, M.W. Moore, The Development of Computational Analysis Techniques for Disc Brake Pad Design, in Advances in Automotive Braking Technology, ed. by D.C. Barton (MEP Ltd., London and Bury St. Edmunds, 1996), p. 158

    Google Scholar 

  67. D. Eggleston, Cold judder. Eurac Techical Bulletin 00029711 [Electronic resource]—1999. Mode of access: http://www.eurac-group.com. Date of access: 07 March 2012

  68. S. Kim, S. Lee, B. Park, S. Rhee, A Comprehensive Study of Humidity Effects on Friction, Pad Wear, Disc Wear, DTV, Brake Noise and Physical Properties of Pads. SAE Paper, 2011-01-2371 (2011)

    Google Scholar 

  69. A. Wirth, R. Whitaker, An energy dispersive x-ray and imaging x-ray photoelectron spectroscopical study of transfer film chemistry and its influence on friction coefficient. Phys. J. D Appl. Phys. 25, A38–A43 (1992)

    Article  Google Scholar 

  70. A. Wirth, K. Stone, R. Whitaker, A study of the relationship between transfer film chemistry and friction performance in automotive braking systems. SAE Paper 922541 (1992)

    Google Scholar 

  71. A. Wirth, R. Whitaker, S. Turners, G. Fixter, X-ray photoelectron spectroscopy characterisation of third body layers formed during automotive friction braking. J. Electron Spectrosc. Relat. Phenom. 68, 675–683 (1994)

    Article  Google Scholar 

  72. A. Wirth, D. Eggleston, R. Whitaker, A fundamental tribochemical study of the third-body layer formed during automotive friction braking. Wear 179, 75–81 (1994)

    Article  Google Scholar 

  73. V.V. Klubovich (ed.), Actual Problems in Strength (UO VGTUU Publ., Vitebsk, 2010), p. 435

    Google Scholar 

  74. Yu.M Pleskachevsky, V.V. Smirnov, V.M. Makarenko, Introduction in the radiation materials science of polymeric materials (Nauka i Tekhnika, Minsk, 1991), p. 191

    Google Scholar 

  75. Yu.I Voronezhtsev, V.A. Goldade, L.S. Pinchuk, V.V. Snezhkov, Electric and magnetic fields in the technology of polymer composites (Nauka i Tekhnika, Minsk, 1990), p. 263

    Google Scholar 

  76. A.G. Anisovich, E.I. Marukovich, T.N. Abramenko, Variations in the heat state of diamagnetic metals under the effect of magnetic field. Bull. RAS Ser. Met. 6, 108–110 (2003)

    Google Scholar 

  77. H.G. Anisovich, Method of nonthermal changing the structure of nonferromagnetic metals and nonmetallic phases, in Proceedings of Korea-Eurasian Seminar, Seoul, November 2008. pp. 166–171

    Google Scholar 

  78. V.V. Azharonok, I.I. Filatova, I.V. Voshchula, V.A. Dlugunovich et al., Variation of optical properties of paper under the effect of magnetic component of the HF magnetic field. J. Appl. Spectro. 74(4), 421–426 (2007)

    Google Scholar 

  79. A.Yu. Persidskaya, I.R. Kuzeev, V.A. Antipin, The effect of impulse magnetic field on mechanical properties of polymeric fibers. Chem. Phys. 21(2), 90–93 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Sergienko .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sergienko, V.P., Bukharov, S.N. (2015). Materials Science Approaches Towards Noise and Vibration Abatement in Nonstationary Friction Processes. In: Noise and Vibration in Friction Systems. Springer Series in Materials Science, vol 212. Springer, Cham. https://doi.org/10.1007/978-3-319-11334-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11334-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11333-3

  • Online ISBN: 978-3-319-11334-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics