Advertisement

Superpixel Based Retinal Area Detection in SLO Images

  • Muhammad Salman Haleem
  • Liangxiu Han
  • Jano van Hemert
  • Baihua Li
  • Alan Fleming
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)

Abstract

Distinguishing true retinal area from artefacts in SLO images is a challenging task, which is the first important step towards computer-aided disease diagnosis. In this paper, we have developed a new method based on superpixel feature analysis and classification approaches for determination of retinal area scanned by Scanning Laser Ophthalmoscope(SLO). Our prototype has achieved the accuracy of 90% on healthy as well as diseased retinal images. To the best of our knowledge, this is the first work on retinal area detection in SLO images.

Keywords

Scanning Laser Ophthalmoscope fundus imaging retinal image analysis retinal artefacts extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2011)Google Scholar
  3. 3.
    Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D., Tan, N.M., Tao, D., Cheng, C.Y., Aung, T., Wong, T.Y.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging 32, 1019–1032 (2013)CrossRefGoogle Scholar
  4. 4.
    Davis, H., Russell, S., Barriga, E., Abramoff, M., Soliz, P.: Vision-based, real-time retinal image quality assessment. In: 22nd IEEE International Symposium on Computer-Based Medical Systems, pp. 1–6 (2009)Google Scholar
  5. 5.
    Haleem, M.S., Han, L., Hemert, J.V., Li, B.: Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Computerized Medical Imaging and Graphics 37, 581–596 (2013)CrossRefGoogle Scholar
  6. 6.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3 (1973)Google Scholar
  7. 7.
    Liu, H., Motoda, H. (eds.): Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers Norwell, MA (1998)zbMATHGoogle Scholar
  8. 8.
    Lupascu, C.A., Tegolo, D., Trucco, E.: Fabc: Retinal vessel segmentation using adaboost. IEEE Transactions on Information Technology in Biomedicine 14, 1267–1274 (2010)CrossRefGoogle Scholar
  9. 9.
    Muramatsu, C., Hatanaka, Y., Sawada, A., Yamamoto, T., Fujita, H.: Computerized detection of peripapillary chorioretinal atrophy by texture analysis. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society, pp. 5947–5950 (2011)Google Scholar
  10. 10.
    Pires, R., Jelinek, H., Wainer, J., Rocha, A.: Retinal image quality analysis for automatic diabetic retinopathy detection. In: 25th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 229–236 (2012)Google Scholar
  11. 11.
    Serrano, A.J., Soria, E., Martin, J.D., Magdalena, R., Gomez, J.: Feature selection using roc curves on classification problems. In: The International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2010)Google Scholar
  12. 12.
    Smola, A., Vishwanathan, S.: Introduction to Machine Learning. Cambridge University Press (2008)Google Scholar
  13. 13.
    Tang, L., Niemeijer, M., Reinhardt, J., Garvin, M.: Splat feature classification with application to retinal hemorrhage detection in fundus images. IEEE Transactions on Medical Imaging 32, 364–375 (2013)CrossRefGoogle Scholar
  14. 14.
    Yu, H., Agurto, C., Barriga, S., Nemeth, S.C., Soliz, P., Zamora, G.: Automated image quality evaluation of retinal fundus photographs in diabetic retinopathy screening. In: IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 125–128 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Muhammad Salman Haleem
    • 1
  • Liangxiu Han
    • 1
  • Jano van Hemert
    • 2
  • Baihua Li
    • 1
  • Alan Fleming
    • 2
  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK
  2. 2.Optos plcDunfermlineUK

Personalised recommendations