Advertisement

Implementation of Advanced Foreground Segmentation Algorithms GMM, ViBE and PBAS in FPGA and GPU – A Comparison

  • Bartlomiej Bulat
  • Tomasz Kryjak
  • Marek Gorgon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)

Abstract

The article presents the results of implementing advanced foreground object segmentation algorithms: GMM (Gaussian Mixture Model), ViBE (Visual Background Extractor) and PBAS (Pixel-Based Adaptive Segmenter) on different hardware platforms: CPU, GPU and FPGA. The influence of the architecture on the segmentation accuracy and feasibility to perform real-time video stream processing was analysed. Also the limitations resulting from the specific features of GPU and FPGA were pointed out. Furthermore, the possible use of different platforms in advanced vision systems was discussed.

Keywords

image processing image analysis foregorund object segmentation GMM ViBE PBAS FPGA GPU 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnich, O., Van Droogenbroeck, M.: ViBE: A Universal Background Subtraction Algorithm for Video Sequences. IEEE Transactions on Image Processing 20(6), 1709–1724 (2011)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bouwmans, T., Porikli, F., Horferlin, B., Vacavant, A.: Handbook on: Background Modeling and Foreground Detection for Video Surveillance: Traditional and Recent Approaches, Implementations, Benchmarking and Evaluation. Taylor and Francis Group (2014)Google Scholar
  3. 3.
    Genovese, M., Napoli, E.: ASIC and FPGA Implementation of the Gaussian Mixture Model Algorithm for Real-Time Segmentation of High Definition Video. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22(3), 537–547 (2014)CrossRefGoogle Scholar
  4. 4.
    Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: A new change detection benchmark dataset. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8 (2012)Google Scholar
  5. 5.
    Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: The Pixel-Based Adaptive Segmenter. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 38–43 (2012)Google Scholar
  6. 6.
    Kryjak, T., Komorkiewicz, M., Gorgon, M.: Hardware implementation of the PBAS foreground detection method in FPGA. In: Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 591–596 (2013)Google Scholar
  7. 7.
    Kryjak, T., Gorgon, M.: Real-time implementation of the ViBE foreground object segmentation algorithm. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 479–484 (2013)Google Scholar
  8. 8.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. xxiii+637+663 (1999)Google Scholar
  9. 9.
    Pham, V., Vo, P., Hung, V.T., Bac, L.H.: GPU Implementation of Extended Gaussian Mixture Model for Background Subtraction. In: IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), pp. 1–4 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bartlomiej Bulat
    • 1
  • Tomasz Kryjak
    • 1
  • Marek Gorgon
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations