Advertisement

Compression of Synthetic-Aperture Radar Images

  • Marzena Bielecka
  • Andrzej Bielecki
  • Wojciech Wojdanowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)

Abstract

In this paper the problem of the synthetic-aperture radar images compression is considered. The algorithm of canonical coherent scatterers identification, proposed in [1,2], based on the analysis of polarimetric signatures, is the starting point of the studies. The question whether the significant dimension reduction of the SAR image matrix preserves the information encoded in the SAR picture or not, is the topic of the paper. It turns out that the compression, by using the Kohonen neural network, allows us to reduce the dimension of the data from 16200-component vector to 100-component vector without losing information. The studies are led in the context of polarimetric data that encode full information about the scatterer. However, there are essential problems with such data processing. Therefore the topic is crucial in the context of the SAR images analysis.

Keywords

SAR Kohonen neural network image compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Porzycka, S., Strzelczyk, J., Bielecka, M., Lesniak, A.: Preliminary pattern recognition in polarimetric signatures. In: IEEE International Geoscience and Remote Sensing Symposium: Remote Sensing for a Dynamic Earth, pp. 22–27 (2012)Google Scholar
  2. 2.
    Bielecka, M., Porzycka-Strzelczyk, S., Strzelczyk, J.: SAR images analysis based on polarimetric signatures. Applied Soft Computing (accepted 2014)Google Scholar
  3. 3.
    Bielecka, M., Skomorowski, M., Bielecki, A.: Fuzzy syntactic approach to pattern recognition and scene analysis. In: Proceedings of the 4th International Conference on Informatics in Control, Automatics and Robotics, ICINCO 2007, ICSO Intelligent Control Systems and Optimization, Robotics and Automation, vol. 1, pp. 29–35 (2007)Google Scholar
  4. 4.
    Bielecki, A., Buratowski, T., Śmigielski, P.: Syntactic algorithm of two-dimensional scene analysis for unmanned flying vehicles. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 304–312. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bielecki, A., Buratowski, T., Śmigielski, P.: Recognition of two-dimensional representation of urban environment for autonomous flying agents. Expert Systems with Applications 40, 3623–3633 (2013)CrossRefGoogle Scholar
  6. 6.
    Farmio-Famil, L., Reigber, A., Pottier, E., Boerner, W.M.: Scene characterization using subaperture polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing 41, 2264–2276 (2013)CrossRefGoogle Scholar
  7. 7.
    Ferretti, A., Prati, C., Rocca, F.: Permanent scatterers in SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing 39, 8–20 (2001)CrossRefGoogle Scholar
  8. 8.
    Fodor, I.K.: A Survey of Dimension Reduction Techniques. Lawrence Livermore National Laboratory (2002)Google Scholar
  9. 9.
    Kaski, S.: Data exploration using self-organizing maps. Acta Polytechnica Scandinavica, Mathematics, Computing and Management in Engineering Series 82 (1997)Google Scholar
  10. 10.
    Kohonen, T.: Adaptive, associative and self-organizing functions in neural computing. Applied Optics 26, 4910–4918 (1997)CrossRefGoogle Scholar
  11. 11.
    Lech, P., Okarma, K.: Optimization of the fast image Binarization method based on the Monte Carlo approach. Electronics and Electrical Engineering 20, 63–66 (2014)Google Scholar
  12. 12.
    Lee, J.S., Pottier, E.: Polarimetric Radar Imaging. From Basic to Application. CRC Press, Taylor and Francis Group (2009)Google Scholar
  13. 13.
    Lee, J.S., Grunes, M.R., Ainsworth, T., Du, L.J., Schuler, D., Cloude, S.R.: Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Transaction on Geoscience and Remote Sensing 37, 2249–2257 (1999)CrossRefGoogle Scholar
  14. 14.
    Metni, M., Hamel, T.: A UAV for bridge inspection: Visual servoing control law with orientation limits. Automation in Construction 17, 3–10 (2007)CrossRefGoogle Scholar
  15. 15.
    Pottier, E., Lee, J.S.: Unsupervised classification scheme of POLSAR images based on the complex Wishart distribution and the H/A/alpha-Polarimetric decomposition theorem. In: Proc. of the 3rd EUSAR 2000 Conference (2000)Google Scholar
  16. 16.
    Sakarya, F.A., Emek, S.: SAR image compression. In: Proceedings of the 13th Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 858–862 (1996)Google Scholar
  17. 17.
    Schneider, R.Z., Papathanassiou, K., Hajnsek, I., Moreira, A.: Polarimetric interferometry over urban areas: infromation extraction using coherent scatterers. In: Proceedings of Geoscience and Remote Sensing Symposium (IGARSS 2005), Seoul, Korea, pp. 25–29 (2005)Google Scholar
  18. 18.
    Skingley, J., Rye, A.J.: The Hough transform applied to SAR images for thin line detection. Pattern Recognition Letters 6, 61–67 (1987)CrossRefGoogle Scholar
  19. 19.
    Strzelczyk, J., Porzycka-Strzelczyk, S.: Identification of coherent scatterers in SAR images based on the analysis of polarimetric signatures. IEEE Geoscience and Remote Sensing Letters 11, 783–787 (2013)CrossRefGoogle Scholar
  20. 20.
    Tadeusiewicz, R.: Neural Networks. Academic Press, Warsaw (1993)Google Scholar
  21. 21.
    Touzi, R., Charbonneau, F.: Characterization of scatterer symmetric scattering using polarimetric SARs. IEEE Transactions on Geoscience and Remote Sensing 40, 2507–2516 (2002)CrossRefGoogle Scholar
  22. 22.
    Tan, C.P., Lim, K.S., Ewe, H.T.: Image processing in polarimetric SAR images using a hybrid entropy decomposition and maximum likelihood (EDML). In: Proceedings of International Symposium on Image and Signal Processing and Analysis (ISPA)Google Scholar
  23. 23.
    Wu, Y., Ji, K., Yu, W., Su, Y.: Region-based classification of polarimetric SAR images using Wishart MRF. IEEE Geoscience and Remote Sensing Letters 5, 668–672 (2008)CrossRefGoogle Scholar
  24. 24.
    van Zyl, J.J.: Unsupervised classification of scattering mechanisms using radar polarimetry data. IEEE Transactions on Geoscience Remote Sensing 27, 36–45 (1989)Google Scholar
  25. 25.
    Ye, Z., Lu, C.-C.: Wavelet-based unsupervised SAR image segmentation using hidden markov tree models. In: Proceedings of the 16th International Conference on Pattern Recognition, ICPR 2002, vol. 2, p. 20729 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marzena Bielecka
    • 1
  • Andrzej Bielecki
    • 2
  • Wojciech Wojdanowski
    • 3
  1. 1.Faculty of Geology, Geophysics and Environmental Protection, Chair of Geoinformatics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of Electrical Engineering, Automation, Computer Science and Biomedical Engineering, Chair of Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland
  3. 3.IBM SWG LabKrakówPoland

Personalised recommendations