A Validation of Combined Metrics for Color Image Quality Assessment

  • Krzysztof Okarma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)


Since most of even recently proposed image quality assessment metrics are typically applied for a single color channel in both compared images, a reliable color image quality assessment is still a challenging task for researchers. One of the major drawbacks limiting the progress in this field is the lack of image datasets containing the subjective scores for images contaminated by color specific distortions. After the publication of the TID2013 dataset, containing i.a. images with 6 types of color distortions, this situation has changed, however there is still a need of validation of some recently proposed grayscale metrics in view of their applicability for color specific distortions.

In this paper some results obtained using different approaches to color to grayscale conversion for some well-known metrics as well as for recently proposed combined ones, are presented and discussed, leading to meaningful increase of the prediction accuracy of image quality for color distortions.


color image quality assessment combined metrics image analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Čadík, M.: Perceptual evaluation of color-to-grayscale image conversions. Comput. Graph. Forum 27(7), 1745–1754 (2008)CrossRefGoogle Scholar
  2. 2.
    Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.B.: Color2gray: salience-preserving color removal. ACM Transactions on Graphics 24(3), 634–639 (2005)CrossRefGoogle Scholar
  3. 3.
    Grundland, M., Dodgson, N.A.: Decolorize: Fast, contrast enhancing, color to grayscale conversion. Pattern Recognition 40(11), 2891–2896 (2007)CrossRefGoogle Scholar
  4. 4.
    International Telecommunication Union: Recommendation P.910 - Subjective video quality assessment methods for multimedia applications (1999)Google Scholar
  5. 5.
    International Telecommunication Union: Recommendation BT.709-5 - Parameter values for the HDTV standards for production and international programme exchange (2002)Google Scholar
  6. 6.
    International Telecommunication Union: Recommendation BT.601-7 - Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios (2011)Google Scholar
  7. 7.
    Kanan, C., Cottrell, G.W.: Color-to-grayscale: Does the method matter in image recognition? PLOS One 7(1), e29740 (2012)Google Scholar
  8. 8.
    Liu, T.J., Lin, W., Kuo, C.C.J.: Image quality assessment using multi-method fusion. IEEE Trans. Image Processing 22(5), 1793–1807 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Mansouri, A., Mahmoudi-Aznaveh, A., Torkamani-Azar, F., Jahanshahi, J.: Image quality assessment using the Singular Value Decomposition theorem. Optical Review 16(2), 49–53 (2009)CrossRefGoogle Scholar
  10. 10.
    Okarma, K.: Combined Image Similarity Index. Optical Review 19(5), 349–354 (2012)CrossRefGoogle Scholar
  11. 11.
    Okarma, K.: Extended hybrid image similarity – combined full-reference image quality metric linearly correlated with subjective scores. Elektronika Ir Elektrotechnika 19(10), 129–132 (2013)CrossRefGoogle Scholar
  12. 12.
    Okarma, K.: Combined full-reference image quality metric linearly correlated with subjective assessment. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 539–546. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Okarma, K.: Hybrid feature similarity approach to full-reference image quality assessment. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 212–219. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008 - a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics 10, 30–45 (2009)Google Scholar
  15. 15.
    Ponomarenko, N., Ieremeiev, O., Lukin, V., Jin, L., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., Kuo, C.C.J.: Color image database TID2013: Peculiarities and preliminary results. In: Proc. 4th European Workshop on Visual Information Processing, EUVIP 2013, Paris, France, pp. 106–111 (2013)Google Scholar
  16. 16.
    Ponomarenko, N., et al.: A new color image database TID2013: Innovations and results. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 402–413. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Sheikh, H., Bovik, A.: Image information and visual quality. IEEE Transactions on Image Processing 15(2), 430–444 (2006)CrossRefGoogle Scholar
  18. 18.
    Tourancheau, S., Autrusseau, F., Sazzad, Z., Horita, Y.: Impact of subjective dataset on the performance of image quality metrics. In: Proc. 15th IEEE Int. Conf. Image Processing, San Diego, California, pp. 365–368 (2008)Google Scholar
  19. 19.
    Wang, Z., Simoncelli, E., Bovik, A.: Multi-Scale Structural Similarity for image quality assessment. In: Proc. 37th IEEE Asilomar Conf. Signals, Systems and Computers, Pacific Grove, California (2003)Google Scholar
  20. 20.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A Feature Similarity index for image quality assessment. IEEE Trans. Image Processing 20(8), 2378–2386 (2011)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhang, L., Zhang, L., Mou, X.: RFSIM: A feature based image quality assessment metric using Riesz transforms. In: Proc. 17th IEEE Int. Conf. Image Processing, Hong Kong, China, pp. 321–324 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Krzysztof Okarma
    • 1
  1. 1.Faculty of Electrical Engineering, Department of Signal Processing and Multimedia EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations