Skip to main content

Multi-sensory Feedback Control in Door Approaching and Opening

  • Conference paper
Book cover Intelligent Systems'2014

Abstract

In the article the robotic system behavior is investigated for the complex door opening task. The system consists of the 7-DOF KUKA LWR4+ manipulator, which is controlled in an impedance way and the BarrettHand gripper, which is controlled in a position way. The system utilizes multi-sensory feedback. The visual feedback is used to roughly localize door and to plan a door approach trajectory. The tactile feedback detects the contact with the door, and handle and determines an exact contact position with the handle. The system does not form a grip in a door opening stage, but the contact between the robot and the door is maintained by the gripper’s fingers (with intrinsic backlash), which are pushing the handle from its one side. This concept allows to open the door when there are obstacles in the neighborhood of the handle (e.g. door jamb or frame), which make the grip impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stefańczyk, M., Walęcki, M.: Localization of essential door features for mobile manipulation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 487–496. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Meeussen, W., Wise, M., Glaser, S., Chitta, S., McGann, C., Mihelich, P., Marder-Eppstein, E., Muja, M., Eruhimov, V., Foote, T., et al.: Autonomous door opening and plugging in with a personal robot. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 729–736. IEEE (2010)

    Google Scholar 

  3. Zieliński, C., Winiarski, T.: Motion generation in the MRROC++ robot programming framework. International Journal of Robotics Research 29(4), 386–413 (2010)

    Article  Google Scholar 

  4. Zieliński, C., Winiarski, T., Mianowski, K., Rydzewski, A., Szynkiewicz, W.: End-effector sensors’ role in service robots. In: Kozłowski, K. (ed.) Robot Motion and Control 2007. LNCIS, vol. 360, pp. 401–414. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Staniak, M., Winiarski, T., Zieliński, C.: Parallel visual-force control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008 (2008)

    Google Scholar 

  6. Winiarski, T., Banachowicz, K., Stefańczyk, M.: Safe strategy of door opening with impedance controlled manipulator. Journal of Automation Mobile Robotics and Intelligent Systems 7(4), 21–26 (2013)

    Article  Google Scholar 

  7. Karayiannidis, Y., Smith, C., Vina, F.E., Ogren, P., Kragic, D.: “open sesame!” adaptive force/velocity control for opening unknown doors. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4040–4047. IEEE (2012)

    Google Scholar 

  8. Winiarski, T., Banachowicz, K.: Opening a door with a redundant impedance controlled robot. In: 9th Workshop on Robot Motion & Control (RoMoCo), pp. 221–226 (2013)

    Google Scholar 

  9. Ott, C., Bäuml, B., Borst, C., Hirzinger, G.: Employing cartesian impedance control for the opening of a door: A case study in mobile manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems Workshop on Mobile Manipulators: Basic Techniques, New Trends & Applications (2005)

    Google Scholar 

  10. Katz, D., Kazemi, M., Andrew Bagnell, J., Stentz, A.: Interactive segmentation, tracking, and kinematic modeling of unknown 3d articulated objects. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5003–5010. IEEE (2013)

    Google Scholar 

  11. Ruhr, T., Sturm, J., Pangercic, D., Beetz, M., Cremers, D.: A generalized framework for opening doors and drawers in kitchen environments. In: International Conference on Robotics and Automation (ICRA), pp. 3852–3858. IEEE (2012)

    Google Scholar 

  12. Chung, W., Rhee, C., Shim, Y., Lee, H., Park, S.: Door-opening control of a service robot using the multifingered robot hand. IEEE Transactions on Industrial Electronics 56(10), 3975–3984 (2009)

    Article  Google Scholar 

  13. Winiarski, T., Woźniak, A.: Indirect force control development procedure. Robotica 31, 465–478 (2013)

    Article  Google Scholar 

  14. Schmid, A., Gorges, N., Goger, D., Worn, H.: Opening a door with a humanoid robot using multi-sensory tactile feedback. In: International Conference on Robotics and Automation (ICRA), pp. 285–291. IEEE (2008)

    Google Scholar 

  15. Kornuta, T., Zieliński, C.: Robot control system design exemplified by multi-camera visual servoing. Journal of Intelligent & Robotic Systems, 1–25 (2013)

    Google Scholar 

  16. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)

    Google Scholar 

  17. Zubrycki, I., Granosik, G.: Test setup for multi-finger gripper control based on robot operating system (ros). In: 2013 9th Workshop on Robot Motion and Control (RoMoCo), pp. 135–140. IEEE (2013)

    Google Scholar 

  18. Bruyninckx, H.: Open robot control software: the orocos project. In: International Conference on Robotics and Automation (ICRA), vol. 3, pp. 2523–2528. IEEE (2001)

    Google Scholar 

  19. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research 26(1), 23–39 (2007)

    Article  Google Scholar 

  20. Caccavale, F., Natale, C., Siciliano, B., Villani, L.: Six-dof impedance control based on angle/axis representations. IEEE Transactions on Robotics and Automation 15(2), 289–300 (1999)

    Article  Google Scholar 

  21. Albu-Schaffer, A., Ott, C., Frese, U., Hirzinger, G.: Cartesian impedance control of redundant robots: Recent results with the dlr-light-weight-arms. In: International Conference on Robotics and Automation (ICRA), vol. 3, pp. 3704–3709. IEEE (2003)

    Google Scholar 

  22. Walęcki, M., Stefańczyk, M., Kornuta, T.: Control system of the active head of a service robot exemplified on visual servoing. In: 9th Workshop on Robot Motion and Control (RoMoCo), pp. 48–53 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Winiarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Winiarski, T., Banachowicz, K., Seredyński, D. (2015). Multi-sensory Feedback Control in Door Approaching and Opening. In: Filev, D., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-319-11310-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11310-4_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11309-8

  • Online ISBN: 978-3-319-11310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics