Skip to main content

Metallic Nanostructures for Electrocatalysis

  • Chapter
  • First Online:
  • 1517 Accesses

Abstract

The metal electrocatalyst research requires molecular-level knowledge of the electrocatalytic reactions and the controlling factors that determine the reaction kinetics. Several important factors, including electronic structure and geometric structure of metal surfaces, third-body effect, and bifunctional effect, are discussed for their roles in electrocatalysis. Chemical stability and surface restructuring/segregation of metals, which need practical consideration in the electrocatalyst research, are introduced. The electrochemistry of oxygen, hydrogen, carbon-containing compounds, and nitrogen-containing compounds is reviewed. Discussions are focused on recent advances in preparing metallic nanostructures for these reactions, and on understanding the relationship between the physical parameters of metallic nanostructures and the electrocatalytic property.

Book Chapter to “Metallic Nanostructures: form Controlled Synthesis to Applications”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Peng Z, Yang H (2009) Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4:143–164

    Article  Google Scholar 

  2. Chan KY, Ding J, Ren JW et al (2004) Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 14:505–516

    Article  Google Scholar 

  3. Guo D-J, Ding Y (2012) Porous nanostructured metals for electrocatalysis. Electroanal. 24:2035–2043

    Article  Google Scholar 

  4. Kelly TG, Chen JG (2012) Metal overlayer on metal carbide substrate: Unique bimetallic properties for catalysis and electrocatalysis. Chem. Soc. Rev. 41:8021–8034

    Article  Google Scholar 

  5. Spendelow JS, Wieckowski A (2004) Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts. Phys. Chem. Chem. Phys. 6:5094–5118

    Article  Google Scholar 

  6. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42:5425–5438

    Article  Google Scholar 

  7. Bing Y, Liu H, Zhang L et al (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39:2184–2202

    Article  Google Scholar 

  8. Lee K, Zhang JJ, Wang HJ et al (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported pt electrocatalysts for PEM fuel cell catalysis. J. Appl. Electrochem. 36:507–522

    Article  Google Scholar 

  9. Shao Y, Liu J, Wang Y et al (2009) Novel catalyst support materials for PEM fuel cells: Current status and future prospects. J. Mater. Chem. 19:46–59

    Article  Google Scholar 

  10. Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 171:558–566

    Article  Google Scholar 

  11. Zhang J, Xie Z, Zhang J et al (2006) High temperature PEM fuel cells. J. Power Sources 160:872–891

    Article  Google Scholar 

  12. Cheng F, Chen J (2012) Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41:2172–2192

    Article  Google Scholar 

  13. Kraytsberg A, Ein-Eli Y (2013) The impact of nano-scaled materials on advanced metal-air battery systems. Nano Energy 2:468–480

    Article  Google Scholar 

  14. Lee J-S, Kim ST, Cao R et al (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 1:34–50

    Article  Google Scholar 

  15. Rahman MA, Wang X, Wen C (2013) High energy density metal-air batteries: A review. J. Electrochem. Soc. 160:A1759–A1771

    Article  Google Scholar 

  16. Diaz-Morales O, Calle-Vallejo F, de Munck C et al (2013) Electrochemical water splitting by gold: Evidence for an oxide decomposition mechanism. Chem. Sci. 4:2334–2343

    Article  Google Scholar 

  17. Fujii K, Nakamura S, Sugiyama M et al (2013) Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int. J. Hydrogen Energy 38:14424–14432

    Article  Google Scholar 

  18. Lopes T, Andrade L, Ribeiro HA et al (2010) Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy. Int. J. Hydrogen Energy 35:11601–11608

    Article  Google Scholar 

  19. Bagotsky VS (2006) Fundamentals of electrochemistry. John Wiley & Sons, Pennington, New Jersey

    Google Scholar 

  20. Gasteiger HA, Kocha SS, Sompalli B et al (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 56:9–35

    Article  Google Scholar 

  21. Marin GB, Yablonsky GS (2011) Kinetics of chemical reactions. Wiley-VCH Verlag & Co., Weinheim

    Google Scholar 

  22. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications. John Wiley & Sons, United States

    Google Scholar 

  23. Koper MTM, Santen RAv, Neurock M (2003) Theory and modeling of catalytic and electrocatalytic reactions. In: Wieckowski A, Savinova ERVayenas CG (ed) Catalysis and electrocatalysis at nanoparticle surfaces, Marcel Dekker, New York, p 1–34

    Google Scholar 

  24. Thomas JM, Thomas WJ (1996) Principles and practice of heterogeneous catalysis. John Wiley & Sons, Weinheim

    Google Scholar 

  25. Lima FHB, Zhang J, Shao MH et al (2007) Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C 111:404–410

    Article  Google Scholar 

  26. Skoplyak O, Barteau MA, Chen JGG (2006) Reforming of oxygenates for H2 production: Correlating reactivity of ethylene glycol and ethanol on Pt(111) and Ni/Pt(111) with surface d-band center. J. Phys. Chem. B 110:1686–1694

    Article  Google Scholar 

  27. Alonso JA (2000) Electronic and atomic structure, and magnetism of transition-metal clusters. Chem. Rev. 100:637–677

    Article  Google Scholar 

  28. Greeley J, Norskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annual Rev. Phys. Chem. 53:319–348

    Google Scholar 

  29. Low GG (1969) Electronic structure of some transition metal alloys. Adv. Phys. 18:371–&

    Google Scholar 

  30. Ruban A, Hammer B, Stoltze P et al (1997) Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A-Chem. 115:421–429

    Article  Google Scholar 

  31. Demirci UB (2007) Theoretical means for searching bimetallic alloy as anode electrocatlaysts for direct liquid-feed fuel cells. J. Power Sources 173:11–18

    Article  Google Scholar 

  32. Garcia G, Rodriguez P, Rosca V et al (2009) Fourier transform infrared spectroscopy study of CO electro-oxidation on Pt(111) in alkaline media. Langmuir 25:13661–13666

    Article  Google Scholar 

  33. Liu Y, Li D, Stamenkovic VR et al (2011) Synthesis of Pt3Sn alloy nanoparticles and their catalysis for electro-oxidation of CO and methanol. ACS Catal. 1:1719–1723

    Article  Google Scholar 

  34. McGrath P, Fojas AM, Reimer JA et al (2009) Electro-oxidation kinetics of adsorbed co on platinum electrocatalysts. Chem. Eng. Sci. 64:4765–4771

    Article  Google Scholar 

  35. Zhang C, Hwang SY, Peng Z (2013) Shape-enhanced ammonia electro-oxidation property of a cubic platinum nanocrystal catalyst prepared by surfactant-free synthesis. J. Mater. Chem. A 1:14402–14408

    Article  Google Scholar 

  36. Spendelow JS, Babu PK, Wieckowski A (2005) Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Curr. Opinion Solid State Mater. Sci. 9:37–48

    Article  Google Scholar 

  37. Cohen JL, Volpe DJ, Abruna HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys. Chem. Chem. Phys. 9:49–77

    Article  Google Scholar 

  38. Antolini E, Salgado JRC, Gonzalez ER (2006) The methanol oxidation reaction on platinum alloys with the first row transition metals—the case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review. Appl. Catal. B-Environ. 63:137–149

    Article  Google Scholar 

  39. Wu J, Yang H (2013) Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46:1848–1857

    Article  Google Scholar 

  40. Wang C, Markovic NM, Stamenkovic VR (2012) Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2:891–898

    Article  Google Scholar 

  41. Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J. Alloys and Compounds 461:253–262

    Article  Google Scholar 

  42. Alonso-Vante N (2010) Platinum and non-platinum nanomaterials for the molecular oxygen reduction reaction. ChemPhysChem 11:2732–2744

    Article  Google Scholar 

  43. Kim KT, Hwang JT, Kim YG et al (1993) Surface and catalytic properties of iron-platinum carbon electrocatalysts for cathodic oxygen reduction in PAFC. J. Electrochem. Soc. 140:31–36

    Article  Google Scholar 

  44. Hwang JT, Chung JS (1993) The morphological and surface-properties and their relationship with oxygen reduction activity for platinum-iron electrocatalysts. Electrochimica Acta 38:2715–2723

    Article  Google Scholar 

  45. Tegou A, Papadimitriou S, Armyanov S et al (2008) Oxygen reduction at platinum- and gold-coated iron, cobalt, nickel and lead deposits on glassy carbon substrates. J. Electroanal. Chem. 623:187–196

    Article  Google Scholar 

  46. Tegou A, Papadimitriou S, Pavfidou E et al (2007) Oxygen reduction at platinum- and gold-coated copper deposits on glassy carbon substrates. J. Electroanal. Chem. 608:67–77

    Article  Google Scholar 

  47. Alia SM, Jensen K, Contreras C et al (2013) Platinum coated copper nanowires and platinum nanotubes as oxygen reduction electrocatalysts. ACS Catal. 3:358–362

    Article  Google Scholar 

  48. Spendelow JS, Lu GQ, Kenis PJA et al (2004) Electrooxidation of adsorbed co on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. J. Electroanal. Chem. 568:215–224

    Article  Google Scholar 

  49. Peng Z, Yang H (2009) PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2:406–415

    Article  Google Scholar 

  50. Morimoto Y, Yeager EB (1998) CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes. J. Electroanal. Chem. 441:77–81

    Article  Google Scholar 

  51. Calle-Vallejo F, Koper MTM, Bandarenka AS (2013) Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem. Soc. Rev. 42:5210–5230

    Article  Google Scholar 

  52. Roychowdhury C, Matsumoto F, Zeldovich VB et al (2006) Synthesis, characterization, and electrocatalytic activity of ptbi and ptpb nanoparticles prepared by borohydride reduction in methanol. Chem. Mater. 18:3365–3372

    Article  Google Scholar 

  53. Matsumoto F (2012) Ethanol and methanol oxidation activity of PtPb, PtBi, and PtBi2 intermetallic compounds in alkaline media. Electrochem. 80:132–138

    Article  Google Scholar 

  54. Tao F, Dag S, Wang L-W et al (2009) Restructuring of hex-Pt(100) under CO gas environments: Formation of 2-D nanoclusters. Nano Lett. 9:2167–2171

    Article  Google Scholar 

  55. Yajima T, Uchida H, Watanabe M (2004) In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed co at Pt-Ru alloy. J. Phys. Chem. B 108:2654–2659

    Article  Google Scholar 

  56. Radmilovic V, Gasteiger HA, Ross PN (1995) Structure and chemical-composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J. Catal. 154:98–106

    Article  Google Scholar 

  57. Iwasita T, Hoster H, John-Anacker A et al (2000) Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt-Ru atom distribution. Langmuir 16:522–529

    Article  Google Scholar 

  58. Gojkovic SL, Vidakovic TR, Durovic DR (2003) Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst. Electrochimica Acta 48:3607–3614

    Article  Google Scholar 

  59. Chu D, Gilman S (1996) Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures. J. Electrochem. Soc. 143:1685–1690

    Article  Google Scholar 

  60. Gattrell M, MacDougall B (2003) The oxygen reduction/evolution reaction. In: Vielstich W, Lamm AGasteiger HA (ed) Handbook of fuel cells— fundamentals technology and applications, vol. 2: Electrocatalysis, John Wiley & Sons, Chichester, p 443–464

    Google Scholar 

  61. Zhang C, Hwang SY, Trout A et al (2014) Solid-state chemistry-enabled scalable production of octahedral Pt–Ni alloy electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 136:7805–7808

    Article  Google Scholar 

  62. Stamenkovic VR, Fowler B, Mun BS et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  Google Scholar 

  63. Carpenter MK, Moylan TE, Kukreja RS et al (2012) Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 134:8535–8542

    Article  Google Scholar 

  64. Lim B, Jiang M, Camargo PHC et al (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Article  Google Scholar 

  65. Wang D, Xin HL, Hovden R et al (2013) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Mater. 12:81–87

    Article  Google Scholar 

  66. Wu J, Qi L, You H et al (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 134:11880–11883

    Article  Google Scholar 

  67. Hong JW, Kang SW, Choi B-S et al (2012) Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. 6:2410–2419

    Google Scholar 

  68. Stephens IEL, Bondarenko AS, Perez-Alonso FJ et al (2011) Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. 133:5485–5491

    Google Scholar 

  69. Wang JX, Inada H, Wu L et al (2009) Oxygen reduction on well-defined core–shell nanocatalysts: Particle size, facet, and pt shell thickness effects. J. Am. Chem. Soc. 131:17298–17302

    Article  Google Scholar 

  70. Zhang J, Lima FHB, Shao MH et al (2005) Platinum monolayer on nonnoble metal–noble metal core–shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 109:22701–22704

    Article  Google Scholar 

  71. Zhang Y, Hsieh Y-C, Volkov V et al (2014) High performance Pt monolayer catalysts produced via core-catalyzed coating in ethanol. 738–742

    Google Scholar 

  72. Shao M, Shoemaker K, Peles A et al (2010) Pt monolayer on porous Pd–Cu alloys as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 132:9253–9255

    Article  Google Scholar 

  73. Zhang L, Iyyamperumal R, Yancey DF et al (2013) Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 7:9168–9172

    Article  Google Scholar 

  74. Kibsgaard J, Gorlin Y, Chen Z et al (2012) Meso-structured platinum thin films: Active and stable electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134:7758–7765

    Article  Google Scholar 

  75. Strasser P, Koh S, Anniyev T et al (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2:454–460

    Article  Google Scholar 

  76. Debe MK, Schmoeckel AK, Vernstrom GD et al (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 161:1002–1011

    Article  Google Scholar 

  77. Ross PN (2003) The oxygen reduction/evolution reaction. In: Vielstich W, Lamm AGasteiger HA (ed) Handbook of fuel cells—fundamentals technology and applications, vol. 2: Electrocatalysis, John Wiley & Sons, Chichester, p 465–480

    Google Scholar 

  78. Cui C, Gan L, Heggen M et al (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Mater. 12:765–771

    Article  Google Scholar 

  79. Choi S-I, Xie S, Shao M et al (2013) Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 13:3420–3425

    Article  Google Scholar 

  80. Zhang J, Yang H, Fang J et al (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10:638–644

    Article  Google Scholar 

  81. Wu J, Zhang J, Peng Z et al (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132:4984–4985

    Article  Google Scholar 

  82. Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta 29:1503–1512

    Article  Google Scholar 

  83. Li H, Lee K, Zhang J (2008) Electrocatalytic H2 oxidation reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers, Springer, London, p 135–164

    Google Scholar 

  84. Gyenge E (2008) Electrocatalytic oxidation of methanol, ethanol and formic acid. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers, Springer, London, p 165–287

    Google Scholar 

  85. Baldauf M, Kolb DM (1996) Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes. J. Phys. Chem. 100:11375–11381

    Article  Google Scholar 

  86. Hoshi N, Kida K, Nakamura M et al (2006) Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 110:12480–12484

    Article  Google Scholar 

  87. Lee H, Habas SE, Somorjai GA et al (2008) Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc. 130:5406–+

    Google Scholar 

  88. Mazumder V, Sun S (2009) Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 131:4588–+

    Google Scholar 

  89. Wang R, Liao S, Ji S (2008) High performance Pd-based catalysts for oxidation of formic acid. J. Power Sources 180:205–208

    Article  Google Scholar 

  90. Choi J-H, Jeong K-J, Dong Y et al (2006) Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J. Power Sources 163:71–75

    Article  Google Scholar 

  91. Obradovic MD, Tripkovic AV, Gojkovic SL (2009) The origin of high activity of Pt-Au surfaces in the formic acid oxidation. Electrochimica Acta 55:204–209

    Article  Google Scholar 

  92. Zhang S, Shao Y, Liao H-g et al (2011) Graphene decorated with PtAu alloy nanoparticles: Facile synthesis and promising application for formic acid oxidation. Chem. Mater. 23:1079–1081

    Article  Google Scholar 

  93. Casado-Rivera E, Gal Z, Angelo ACD et al (2003) Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface. ChemPhysChem 4:193–199

    Article  Google Scholar 

  94. Tripkovic AV, Popovic KD, Stevanovic RM et al (2006) Activity of a PtBi alloy in the electrochemical oxidation of formic acid. Electrochem. Comm. 8:1492–1498

    Google Scholar 

  95. Alden LR, Han DK, Matsumoto F et al (2006) Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: Electrocatalytic oxidation of formic acid. Chem. Mater. 18:5591–5596

    Article  Google Scholar 

  96. Matsumoto F, Roychowdhury C, DiSalvo FJ et al (2008) Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation. J. Electrochem. Soc. 155:B148–B154

    Google Scholar 

  97. Zhang LJ, Wang ZY, Xia DG (2006) Bimetallic PtPb for formic acid electro-oxidation. J. Alloys and Compounds 426:268–271

    Article  Google Scholar 

  98. Peng Z, You H, Yang H (2010) An electrochemical approach to PtAg alloy nanostructures rich in Pt at the surface. Adv. Func. Mater. 20:3734–3741

    Article  Google Scholar 

  99. Kowal A, Li M, Shao M et al (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nature Mater. 8:325–330

    Article  Google Scholar 

  100. Cairns EJ, Simons EL, Tevebaug AD (1968) Ammonia-oxygen fuel cell. Nature 217:780–781

    Article  Google Scholar 

  101. Rees NV, Compton RG (2011) Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuel cells. Energy Environ. Sci. 4:1255–1260

    Article  Google Scholar 

  102. Schuth F, Palkovits R, Schlogl R et al (2012) Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy Environ. Sci. 5:6278–6289

    Article  Google Scholar 

  103. de Mishima BAL, Lescano D, Holgado TM et al (1998) Electrochemical oxidation of ammonia in alkaline solutions: Its application to an amperometric sensor. Electrochim. Acta 43:395–404

    Article  Google Scholar 

  104. Diaz LA, Botte GG (2012) Electrochemical deammonification of synthetic swine wastewater. Ind. Eng. Chem. Res. 51:12167–12172

    Google Scholar 

  105. Feng C, Sugiura N, Shimada S et al (2003) Development of a high performance electrochemical wastewater treatment system. J. Hazard. Mater. 103:65–78

    Article  Google Scholar 

  106. Gerische H, Mauerer A (1970) Studies on anodic oxidation of ammonium on platinum electrodes. J. Electroanal. Chem. 25:421–433

    Article  Google Scholar 

  107. Rosca V, Duca M, de Groot MT et al (2009) Nitrogen cycle electrocatalysis. Chem. Rev. 109:2209–2244

    Article  Google Scholar 

  108. Gootzen JFE, Wonders AH, Visscher W et al (1998) A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum. Electrochim. Acta 43:1851–1861

    Article  Google Scholar 

  109. de Vooys ACA, Mrozek MF, Koper MTM et al (2001) The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy. Electrochem. Commun. 3:293–298

    Article  Google Scholar 

  110. Endo K, Katayama Y, Miura T (2005) A rotating disk electrode study on the ammonia oxidation. Electrochim. Acta 50:2181–2185

    Article  Google Scholar 

  111. Vidal-Iglesias FJ, Solla-Gullon J, Montiel V et al (2005) Ammonia selective oxidation on pt(100) sites in an alkaline medium. J. Phys. Chem. B 109:12914–12919

    Article  Google Scholar 

  112. Rosca V, Koper MTM (2006) Electrocatalytic oxidation of ammonia on pt(111) and pt(100) surfaces. Phys. Chem. Chem. Phys. 8:2513–2524

    Article  Google Scholar 

  113. Vidal-Iglesias FJ, García-Aráez N, Montiel V et al (2003) Selective electrocatalysis of ammonia oxidation on pt(100) sites in alkaline medium. 5:22–26

    Google Scholar 

  114. Novell-Leruth G, Valcarcel A, Clotet A et al (2005) DFT characterization of adsorbed NHx species on Pt(100) and Pt(111) surfaces. J. Phys. Chem. B 109:18061–18069

    Article  Google Scholar 

  115. Novell-Leruth G, Ricart JM, Perez-Ramirez J (2008) Pt(100)-catalyzed ammonia oxidation studied by DFT: Mechanism and microkinetics. J. Phys. Chem. C 112:13554–13562

    Article  Google Scholar 

  116. Novell-Leruth G, Valcarcel A, Perez-Ramirez J et al (2007) Ammonia dehydrogenation over platinum-group metal surfaces. Structure, stability, and reactivity of adsorbed NHx species. J. Phys. Chem. C 111:860–868

    Article  Google Scholar 

  117. Offermans WK, Jansen APJ, van Santen RA et al (2007) Ammonia dissociation on Pt{100}, Pt{111}, and Pt{211}: A comparative density functional theory study. J. Phys. Chem. C 111:17551–17557

    Article  Google Scholar 

  118. Alvarez-Ruiz B, Gomez R, Orts JM et al (2002) Role of the metal and surface structure in the electro-oxidation of hydrazine in acidic media. J. Electrochem. Soc. 149:D35–D45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenmeng Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, Z. (2015). Metallic Nanostructures for Electrocatalysis. In: Xiong, Y., Lu, X. (eds) Metallic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-11304-3_7

Download citation

Publish with us

Policies and ethics