Skip to main content

Interactions of Metallic Nanocrystals with Small Molecules

  • Chapter
  • First Online:
Metallic Nanostructures
  • 1464 Accesses

Abstract

Metallic nanocrystals have been widely used in heterogeneous catalysis and biomedical applications. The essence of these applications is more or less related to interactions of metallic nanocrystals with molecules such as O2, H2, and CO. This chapter summarizes the progress on the related research with a focus on fundamentals. Two typical small molecules, O2 and H2 are highlighted to demonstrate the mechanisms for metal–molecule interactions, followed by brief introduction to their applications. Notably, charge transfer process plays a central role in the interactions. Acquiring this information, one can rationally tune the performance of metal nanocrystals in catalysis and biomedicine by tailoring their parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wahlen, J., De Vos, D. E., Jacobs, P. A., et al., Adv Synth Catal. 346, 152 (2004)

    Article  Google Scholar 

  2. Kovalev, D., Fujii, M., Adv Mater. 17, 2531 (2005)

    Article  Google Scholar 

  3. Hikazudani, S., Mochida, T., Yano, K., et al., Catal Commun. 12, 1396 (2011)

    Article  Google Scholar 

  4. Jin, M., Liu, H., Zhang, H., et al., Nano Res. 4, 83 (2010)

    Article  Google Scholar 

  5. Reetz, M. T., Westermann, E., Angew Chem Int Ed Engl. 39, 165 (2000)

    Article  Google Scholar 

  6. Enache, D. I., Edwards, J. K., Landon, P., et al., Science. 311, 362 (2006)

    Article  Google Scholar 

  7. Besson, M., Lahmer, F., Gallezot, P., et al., J Catal. 152, 116 (1995)

    Article  Google Scholar 

  8. Kesavan, L., Tiruvalam, R., Ab Rahim, M. H., et al., Science. 331, 195 (2011)

    Article  Google Scholar 

  9. Wittstock, A., Zielasek, V., Biener, J., et al., Science. 327, 319 (2010)

    Article  Google Scholar 

  10. Brune, H., Wintterlin, J., Behm, R. J., et al., Phys Rev Lett. 68, 624 (1992)

    Article  Google Scholar 

  11. Komrowski, A., Sexton, J., Kummel, A., et al., Phys Rev Lett. 87, 246103 (2001)

    Article  Google Scholar 

  12. Behler, J., Delley, B., Lorenz, S., et al., Phys Rev Lett. 94, 036104 (2005)

    Article  Google Scholar 

  13. Gottfried, J. M., Schmidt, K. J., Schroeder, S. L. M., et al., Sur Sci. 511, 65 (2002)

    Article  Google Scholar 

  14. Haruta, M., Kobayashi, T., Sano, H., et al., Chem Lett. 16, 405 (1987)

    Google Scholar 

  15. Salisbury, B. E., Wallace, W. T., Whetten, R. L., Chem Phys. 262, 131 (2000)

    Article  Google Scholar 

  16. Cox, D. M., Brickman, R., Creegan, K., et al., Z Phys D Atom Mol Cl. 19, 353 (1991)

    Article  Google Scholar 

  17. Pal, R., Wang, L. M., Pei, Y., et al., J Am Chem Soc. 134, 9438 (2012)

    Article  Google Scholar 

  18. Huang, W., Zhai, H. J., Wang, L. S., J Am Chem Soc. 132, 4344 (2010)

    Article  Google Scholar 

  19. Woodham, A. P., Meijer, G., Fielicke, A., Angew Chem Int Ed Engl. 51, 4444 (2012)

    Article  Google Scholar 

  20. Woodham, A. P., Meijer, G., Fielicke, A., J Am Chem Soc. 135, 1727 (2013)

    Article  Google Scholar 

  21. Ding, X., Li, Z., Yang, J., et al., J Chem Phys. 120, 9594 (2004)

    Article  Google Scholar 

  22. Roldan, A., Ricart, J. M., Illas, F., et al., Phys Chem Chem Phys. 12, 10723 (2010)

    Article  Google Scholar 

  23. Zhao, Y., Khetrapal, N. S., Li, H., et al., Chem Phys Lett. 592, 127 (2014)

    Article  Google Scholar 

  24. Comotti, M., Della Pina, C., Matarrese, R., et al., Angew Chem Int Ed Engl. 43, 5812 (2004)

    Article  Google Scholar 

  25. Schubert, M., Hackenberg, S., van Veen, A. C., et al., J Catal. 197, 113 (2001)

    Article  Google Scholar 

  26. Okumura, M., Nakamura, S., Tsubota, S., et al., Catal Lett. 51, 53 (1998)

    Article  Google Scholar 

  27. Haruta, M., Tsubota, S., Kobayashi, T., et al., J Catal. 144, 175 (1993)

    Article  Google Scholar 

  28. Kang, Y. M., Wan, B. Z., Catal Today. 26, 59 (1995)

    Article  Google Scholar 

  29. Park, E. D., Lee, J. S., J Catal. 186, 1 (1999)

    Article  Google Scholar 

  30. Kozlov, A. I., Kozlova, A. P., Liu, H. C., et al., Appl Catal A-Gen. 182, 9 (1999)

    Article  Google Scholar 

  31. Vankayala, R., Sagadevan, A., Vijayaraghavan, P., et al., Angew Chem Int Ed Engl. 50, 10640 (2011)

    Article  Google Scholar 

  32. Vankayala, R., Kuo, C.-L., Sagadevan, A., et al., J Mater Chem B. 1, 4379 (2013)

    Article  Google Scholar 

  33. Zhang, Y., Aslan, K., Previte, M. J., et al., J Fluoresc. 17, 345 (2007)

    Article  Google Scholar 

  34. Huang, Y. F., Zhang, M., Zhao, L. B., et al., Angew Chem Int Ed Engl. 53, 2353 (2014)

    Article  Google Scholar 

  35. Turner, M., Golovko, V. B., Vaughan, O. P. H., et al., Nature. 454, 981 (2008)

    Article  Google Scholar 

  36. Widmann, D., Behm, R. J., Accounts Chem Res. 47, 740 (2014)

    Article  Google Scholar 

  37. Widmann, D., Liu, Y., Schuth, F., et al., J Catal. 276, 292 (2010)

    Article  Google Scholar 

  38. Long, R., Mao, K., Ye, X., et al., J Am Chem Soc. 135, 3200 (2013)

    Article  Google Scholar 

  39. Long, R., Mao, K., Gong, M., et al., Angew Chem Int Ed Engl. 53, 3205 (2014)

    Article  Google Scholar 

  40. Vansanten, R. A., Kuipers, H. P. C. E., Adv Catal. 35, 265 (1987)

    Google Scholar 

  41. Pettenkofer, C., Pockrand, I., Otto, A., Sur Sci. 135, 52 (1983)

    Article  Google Scholar 

  42. Vankayala, R., Sagadevan, A., Vijayaraghavan, P., et al., Angew Chem Int Ed Engl. 50, 10640 (2011)

    Article  Google Scholar 

  43. Trimm, D. L. Design of Industrial Catalysts; Elsevier Scientific Publishing Company: Amsterdam-Oxford-New York, 1980.

    Google Scholar 

  44. Leonard, S., Gannett, P. M., Rojanasakul, Y., et al., J Inorg Biochem. 70, 239 (1998)

    Article  Google Scholar 

  45. Okuyama, H., Siga, W., Takagi, N., et al., Sur Sci. 401, 344 (1998)

    Article  Google Scholar 

  46. Maiti, A., Gee, R., Maxwell, R., et al., J Phys Chem B. 110, 3499 (2006)

    Article  Google Scholar 

  47. Staykov, A., Kamachi, T., Ishihara, T., et al., J Phys Chem C. 112, 19501 (2008)

    Article  Google Scholar 

  48. Tian, P., Ouyang, L., Xu, X., et al., Chinese J Catal. 34, 1002 (2013)

    Article  Google Scholar 

  49. Blanco-Rey, M., Juaristi, J. I., Diez Muino, R., et al., Phys Rev Lett. 112, 103203 (2014)

    Google Scholar 

  50. Groß, A., Phys Rev Lett. 103, 246101 (2009)

    Google Scholar 

  51. Langhammer, C., Zhdanov, V. P., Zoric, I., et al., Phys Rev Lett. 104, 135502 (2010)

    Google Scholar 

  52. Tripodi, P., McKubre, M. C. H., Tanzella, F. L., et al., Phys Lett A. 276, 122 (2000)

    Article  Google Scholar 

  53. Kyriakou, G., Boucher, M. B., Jewell, A. D., et al., Science. 335, 1209 (2012)

    Article  Google Scholar 

  54. Tierney, H. L., Baber, A. E., Kitchin, J. R., et al., Phys Rev Lett. 103, 246102 (2009)

    Google Scholar 

  55. Crespo-Quesada, M., Yarulin, A., Jin, M., et al., J Am Chem Soc. 133, 12787 (2011)

    Article  Google Scholar 

  56. Yamada, Y. M., Yuyama, Y., Sato, T., et al., Angew Chem Int Ed Engl. 53, 127 (2014)

    Article  Google Scholar 

  57. Kobayashi, J., Mori, Y., Okamoto, K., et al., Science. 304, 1305 (2004)

    Article  Google Scholar 

  58. Offermans, P., Tong, H. D., van Rijn, C. J. M., et al., Appl Phys Lett. 94, 223110 (2009)

    Article  Google Scholar 

  59. Zeng, X. Q., Latimer, M. L., Xiao, Z. L., et al., Nano Lett. 11, 262 (2011)

    Article  Google Scholar 

  60. Favier, F., Walter, E. C., Zach, M. P., et al., Science. 293, 2227 (2001)

    Article  Google Scholar 

  61. Villanueva, L. G., Fargier, F., Kiefer, T., et al., Nanoscale. 4, 1964 (2012)

    Article  Google Scholar 

  62. Liu, N., Tang, M. L., Hentschel, M., et al., Nat Mater. 10, 631 (2011)

    Article  Google Scholar 

  63. Chiu, C. Y., Huang, M. H., Angew Chem Int Ed Engl. 52, 12709 (2013)

    Article  Google Scholar 

  64. Bilski, P., Reszka, K., Bilska, M., et al., J Am Chem Soc. 118, 1330 (1996)

    Article  Google Scholar 

  65. Konaka, R., Kasahara, E., Dunlap, W. C., et al., Free Radical Bio Med. 27, 294 (1999)

    Article  Google Scholar 

  66. Noda, Y., Anzai, K., Mori, A., et al., Biochem Mol Biol Int. 42, 35 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Long, R., Xiong, Y. (2015). Interactions of Metallic Nanocrystals with Small Molecules. In: Xiong, Y., Lu, X. (eds) Metallic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-11304-3_4

Download citation

Publish with us

Policies and ethics