Skip to main content

Bimetallic Nanocrystals: Growth Models and Controlled Synthesis

  • Chapter
  • First Online:
Metallic Nanostructures
  • 1554 Accesses

Abstract

In recent years, improvements in the fundamental understanding of synergistic effect between two distinct metal elements in bimetallic nanocrystals have started to revolutionize the development of alternative energy systems for clean energy production, storage, and conversion. By using an interdisciplinary approach that combines both experimental and computational methods, the scientists are possible to rational-design and predict the properties that can enhance the performance of bimetallic nanocrystals for required applications. Although the choice of metal elements is an important aspect of bimetallic nanocrystals, their structures (e.g., core-shell, dendrite, and alloy) are a concern for nearly all bimetallic nanocrystals’ applications. This chapter will mainly describe the influence of bimetallic structures for the applications and their related synthetic strategies, aiming to provide guidance to rationally design and synthesize bimetallic nanocrystals with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Toshima, T. Yonezawa, New J. Chem. 22, 1179 (1998)

    Google Scholar 

  2. R. Ferrando, J. Jellinek, R. Johnston, Chem. Rev. 108, 845 (2008)

    Google Scholar 

  3. D. S. Wang, Y. D. Li, Adv. Mater. 23, 1044 (2011)

    Google Scholar 

  4. C. Gao, Z. Lu, Y. Liu, et al. Angew. Chem. Int. Ed. 51, 5629 (2012)

    Google Scholar 

  5. C. Chen, Y. Kang, Z. Huo, et al. Science 343, 1339 (2014)

    Google Scholar 

  6. M. P. Andrews, S. C. O’Brien, J. Phys. Chem. 96, 8233 (1992)

    Google Scholar 

  7. F. Wang, L. Sun, W. Feng, et al. Small 6, 2566 (2010)

    Google Scholar 

  8. E. Bauer, J. H. van der Merwe, Phys. Rev. B.: Condens. Matter. 33, 3657 (1986)

    Google Scholar 

  9. F. R. Fang, D. Y. Liu, Y. F. Wu, et al. J. Am. Chem. Soc. 130, 6949 (2008)

    Google Scholar 

  10. S. A. Chambers, Surf. Sci. Rep. 39, 105 (2000)

    Google Scholar 

  11. A. W. K. Liu, M. B. Santos, Eds. Thin films: heteroepitaxial system, Series on Directions in Condensed Matter Physics, World Scientific, 15, p27 (1999)

    Google Scholar 

  12. H. Gerisher, C. W. Tobias, Eds. Advances in electrochemistry and electrochemical engineering. Wiley-Interscience, New York, 11, 125 (1978)

    Google Scholar 

  13. R. Johnston, J. Wilcoxon, Eds. Metal nanoparticles and nanoalloys. Elsevier, Oxford, p8 (2012)

    Google Scholar 

  14. H. Lipson, Ed. The study of metals and alloys by X-ray powder diffraction methods. University College Cardiff Press, Cardiff, Wales, p7 (2001)

    Google Scholar 

  15. Z. Jiang, Q. Zhang, C. Zong, et al. J. Mater. Chem. 22, 18192 (2012)

    Google Scholar 

  16. Z. Xu, E. Lai, S. Shao-Horn, et al. Chem. Commun. 48, 5626 (2012)

    Google Scholar 

  17. Y. W. Lee, M. Kim, S. Kang, et al. Angew. Chem. Int. Ed. 50, 3466 (2011)

    Google Scholar 

  18. M. K. Carpenter, T. E. Moylan, R. S. Kukreja, et al. J. Am. Chem. Soc. 134, 8535 (2012)

    Google Scholar 

  19. S. I. Choi, S. U. Lee, W. Y. Kim, et al. Appl. Mater.Interfaces 4, 6228 (2012)

    Google Scholar 

  20. A. R. Denton, N. W. Ashcroft, Phys. Rev. A 43, 3161 (1991)

    Google Scholar 

  21. L. Zhang, J. Zhang, Q. Kuang, et al. J. Am. Chem. Soc. 133, 17114 (2011)

    Google Scholar 

  22. Y. Ma, W. Li, E. C. Cho, et al. ACS Nano 4, 6725 (2010)

    Google Scholar 

  23. M. Jin, H. Zhang, J. Wang, et al. ACS Nano 6, 2566 (2012)

    Google Scholar 

  24. S. Xie, S. Choi, N. Lu, et al. Nano Lett. 14, 3570 (2014)

    Google Scholar 

  25. A. Q. Zhang, D. J. Qian, M. Chen, Eur. Phys. J. D 67, 231 (2013)

    Google Scholar 

  26. C. Zhu, J. Zeng, J. Tao, et al. J. Am. Chem. Soc. 134, 15822 (2012)

    Google Scholar 

  27. J. Chen, B. Wiley, Z. Li, et al. Adv. Mater. 17, 2255 (2005)

    Google Scholar 

  28. L. Durán Pachón, M. Thathagar, F. Hartl, et al. Phys. Chem. Chem. Phys. 8, 151 (2006)

    Google Scholar 

  29. B. Lim, M. Jiang, P. H. C. Camargo, et al. Science 324, 1302 (2009)

    Google Scholar 

  30. V. R. Stamenkovic, B. Fowler, B. S. Mun, et al. Science 315, 493 (2007)

    Google Scholar 

  31. S. U. Son, Y. Jiang, J. Park, et al. J. Am. Chem. Soc. 126, 5026 (2004)

    Google Scholar 

  32. H. Bonnemann, R. A. Brand, W. Brijoux, et al. Appl. Organometal. Chem. 19, 790 (2005)

    Google Scholar 

  33. R. D. Rutledge, W. H. Morris, M. S. Wellons, et al. J. Am. Chem. Soc. 128, 14210 (2006)

    Google Scholar 

  34. I. Robinson, S. Zacchini, L. D. Tung, et al. Chem. Mater. 21, 3021 (2007)

    Google Scholar 

  35. S. H. Sun, C. B. Murray, D. Weller, et al. Science 287, 1989 (2000)

    Google Scholar 

  36. S. H. Sun, Adv. Mater. 18, 393 (2006)

    Google Scholar 

  37. M. Chen, J. P. Liu, S. Sun, J. Am. Chem. Soc. 126, 8394 (2004)

    Google Scholar 

  38. M. Chen, J. Kim, J. P. Liu et al. J. Am. Chem. Soc. 128, 7132 (2006)

    Google Scholar 

  39. C. Wang, Y. Hou, J. Kim, S. Sun, Angew. Chem. Int. Ed. 46, 6333 (2007)

    Google Scholar 

  40. Y. D. Li, L. D. Li, H. W. Liao, et al. J. Mater. Chem. 9, 2675 (1999)

    Google Scholar 

  41. Q. Liu, Z. Yan, N. L. Henderson, et al. J. Am. Chem. Soc. 131, 5720 (2009)

    Google Scholar 

  42. D. Xu, Z. Liu, H. Yang, et al. Angew. Chem. Int. Ed. 48, 4217 (2009)

    Google Scholar 

  43. J. W. Hong, Y. W. Lee, J. Kim, et al. Chem. Commun. 47, 2553 (2011)

    Google Scholar 

  44. A. X. Yin, X. Q. Min, Y. W. Zhang, et al. J. Am. Chem. Soc. 133, 3816 (2011)

    Google Scholar 

  45. L. Kuai, X. Yu, S. Wang, et al. Langmuir 28, 7168 (2012)

    Google Scholar 

  46. Y. W. Lee, J. Kim, Z. H. Kim, et al. J. Am. Chem. Soc. 131, 17036 (2009)

    Google Scholar 

  47. B. Lim, J. Wang, P. H. C. Camargo, et al. Angew. Chem. Int. Ed. 48, 6304 (2009)

    Google Scholar 

  48. Y. Liu, M. Chi, V. Mazumder, et al. Chem. Mater. 23, 4199 (2011)

    Google Scholar 

  49. C. Wang, H. Yin, R. Chan, et al. Chem. Mater. 21, 433 (2009)

    Google Scholar 

  50. S. E. Skrabalak, J. Chen, Y. Sun, et al. Acc. Chem. Res. 41, 1587 (2008)

    Google Scholar 

  51. J. Chen, J. M. McLellan, A. Siekkinen, et al. J. Am. Chem. Soc. 128, 14776 (2006)

    Google Scholar 

  52. S. E. Skrabalak, J. Chen, L. Au, et al. Adv. Mater. 19, 3177 (2007)

    Google Scholar 

  53. Y. Sun, Y. Xia, Nano Lett. 3, 1569 (2003)

    Google Scholar 

  54. J. Chen, B. Wiley, J. M. McLellan, et al. Nano Lett. 5, 2058 (2005)

    Google Scholar 

  55. Y. Sun, Y. Xia, J. Am. Chem. Soc. 126, 3892 (2004)

    Google Scholar 

  56. R. Newman, K. Sieradzki, Science 263, 1708 (1994)

    Google Scholar 

  57. L. Martinez, M. Segarra, M. Fernandez, et al. Metall. Trans. B 24B, 827 (1993)

    Google Scholar 

  58. H. Zhang, M. Jin, J. Wang, et al. J. Am. Chem. Soc. 133, 6078 (2011)

    Google Scholar 

  59. N. M. Shahjamali, M. Bosman, S. Cao, et al. Adv. Funct. Mater. 22, 849 (2012)

    Google Scholar 

  60. X. Peng, Adv. Mater 15, 459 (2003)

    Google Scholar 

  61. Y. Xiong, Y. Xia, Adv. Mater. 19, 3385 (2007)

    Google Scholar 

  62. Y. Xia, Y. Xiong, B. Lim, et al. Angew. Chem. Int. Ed. 48, 60 (2009)

    Google Scholar 

  63. S. E. Habas, H. Lee, V. Radmilovic, et al. Nat. Mater. 6, 692 (2007)

    Google Scholar 

  64. J. Li, Y. Zheng, J. Zeng, et al. Chem. Eur. J. 18, 8150 (2012)

    Google Scholar 

  65. B. Lim, H. Kobayashi, T. Yu, et al. J. Am. Chem. Soc. 132, 2506 (2010)

    Google Scholar 

  66. L. Wang, Y. Nemoto, Y. Yamauchi, J. Am. Chem. Soc. 133, 9674 (2011)

    Google Scholar 

  67. W. Chen, R. Yu, L. Li, et al. Angew. Chem. Int. Ed. 49, 2917 (2010)

    Google Scholar 

Download references

Acknowledgment

This work was performed at Xi’an Jiaotong University and supported by the “start-up fund,” “the Fundamental Research Funds for the Central University,” and Center for Materials Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshang Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z., Jin, M. (2015). Bimetallic Nanocrystals: Growth Models and Controlled Synthesis. In: Xiong, Y., Lu, X. (eds) Metallic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-11304-3_3

Download citation

Publish with us

Policies and ethics