Skip to main content

Controlled Synthesis: Nucleation and Growth in Solution

  • Chapter
  • First Online:
Metallic Nanostructures

Abstract

The controlled synthesis of metallic nanomaterials in solution is central to realize many applications that arise from their fascinating properties. As properties in metal nanomaterials are strongly dependent upon size, shape, composition, structure (solid versus hollow interiors), and surface functionality, controlled synthesis is a powerful approach to tailor and optimize properties as well as to establish how they are dependent on the several physical and chemical parameters that define a nanostructure. In this context, this chapter focuses on the fundamentals of the controlled synthesis of metal nanomaterials in solution phase in terms of the available theoretical framework. Specifically, it starts by introducing the mechanisms employed for the stabilization of nanomaterials during solution-phase synthesis (Sect. 2.2). The basics of nucleation and growth in solution will be discussed in Sect. 2.3. After that, the shape-controlled synthesis of Ag nanomaterials will be employed as proof-of-concept example of how thermodynamic versus kinetic considerations, oxidative etching, and surface capping can be employed to effectively maneuver the shape of a metal nanocrystal in solution (Sect. 2.4). Finally, some of the current challenges and outlook regarding the controlled synthesis of metal-based nanomaterials will be presented (Sect. 2.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009).

    Google Scholar 

  2. I. Lee, F. Delbecq, R. Morales, M. A. Albiter, and F. Zaera, Nat. Mater. 8, 132 (2009).

    Google Scholar 

  3. H. Zhang, M. Jin, Y. Xiong, B. Lim, and Y. Xia, Acc. Chem. Res. 46, 1783 (2012).

    Google Scholar 

  4. H. Goesmann and C. Feldmann, Angew. Chem. Int. Ed. 49, 1362 (2010).

    Google Scholar 

  5. G. Cao and Y. Wang, Nanostructures and Nanomaterials Synthesis, Properties, and Applications, 2nd ed. (World Scientific Publishing Company, 2011).

    Google Scholar 

  6. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950).

    Google Scholar 

  7. E. Roduner, Chem. Soc. Rev. 35, 583 (2006).

    Google Scholar 

  8. A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed. (John Wiley & Sons, Ltd., New York, 1997).

    Google Scholar 

  9. K. Holmberg, Handbook of Applied Surface and Colloid Chemistry (John Wiley & Sons Ltd, West Sussex, 2002).

    Google Scholar 

  10. P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd ed. (Marcel Dekker, Inc, 1997).

    Google Scholar 

  11. J. Goodwin, Colloids and Interfaces with Surfactants and Polymers, 2nd ed. (John Wiley & Sons Ltd, Chichester, 2009).

    Google Scholar 

  12. B. V Derjaguin and L. Landau, Acta Physicochim. URSS 633 (1941).

    Google Scholar 

  13. E. J. W. Verwey, J. T. J. Overbeek, and K. van Ness, Theory of the Stability of Lyophobic Colloids. The Interaction of Particles Having an Electric Double Layer (Elsevier Inc., New Tork-Amsterdan, 1948).

    Google Scholar 

  14. J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951).

    Google Scholar 

  15. G. Frens, Nat. Phys. Sci. 241, 20 (1973).

    Google Scholar 

  16. D. Napper, J. Colloid Interface Sci. 58, 390 (1977).

    Google Scholar 

  17. A. R. Tao, S. Habas, and P. Yang, Small 4, 310 (2008).

    Google Scholar 

  18. R. P. Sear, J. Phys. Condens. Matter 19, 33101 (2007).

    Google Scholar 

  19. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angew. Chem. Int. Ed. 46, 4630 (2007).

    Google Scholar 

  20. J. W. Mullin, Crystallization (Elsevier, 2001), pp. 181–215.

    Google Scholar 

  21. Y. Wu, D. Wang, and Y. Li, Chem. Soc. Rev. 43, 2112 (2014).

    Google Scholar 

  22. J. M. Yuk, J. Park, P. Ercius, K. Kim, D. J. Hellebusch, M. F. Crommie, J. Y. Lee, A. Zettl, and A. P. Alivisatos, Science 336, 61 (2012).

    Google Scholar 

  23. H. Reiss, J. Chem. Phys. 19, 482 (1951).

    Google Scholar 

  24. R. Williams, P. N. Yocom, and F. S. Stofko, J. Colloid Interface Sci. 106, 388 (1985).

    Google Scholar 

  25. Q. Zhang, S.-J. Liu, and S.-H. Yu, J. Mater. Chem. 19, 191 (2009).

    Google Scholar 

  26. X. Xue, R. L. Penn, E. R. Leite, F. Huang, and Z. Lin, CrystEngComm 16, 1419 (2014).

    Google Scholar 

  27. T. J. Woehl, C. Park, J. E. Evans, I. Arslan, W. D. Ristenpart, and N. D. Browning, (2014).

    Google Scholar 

  28. M. Harada, N. Tamura, and M. Takenaka, J. Phys. Chem. C 115, 14081 (2011).

    Google Scholar 

  29. J. Polte, R. Kraehnert, M. Radtke, U. Reinholz, H. Riesemeier, A. F. Thünemann, and F. Emmerling, J. Phys. Conf. Ser. 247, 012051 (2010).

    Google Scholar 

  30. R. L. Penn and J. A. Soltis, CrystEngComm 16, 1409 (2014).

    Google Scholar 

  31. W. Lv, W. He, X. Wang, Y. Niu, H. Cao, J. H. Dickerson, and Z. Wang, Nanoscale 6, 2531 (2014).

    Google Scholar 

  32. F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, and Z.-Q. Tian, J. Am. Chem. Soc. 130, 6949 (2008).

    Google Scholar 

  33. C. J. DeSantis, R. G. Weiner, A. Radmilovic, M. M. Bower, and S. E. Skrabalak, J. Phys. Chem. Lett. 4, 3072 (2013).

    Google Scholar 

  34. S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Nat. Mater. 6, 692 (2007).

    Google Scholar 

  35. J. Zeng, Y. Zheng, M. Rycenga, J. Tao, Z.-Y. Li, Q. Zhang, Y. Zhu, and Y. Xia, J. Am. Chem. Soc. 132, 8552 (2010).

    Google Scholar 

  36. A. Tao, P. Sinsermsuksakul, and P. Yang, Angew. Chem. Int. Ed. 45, 4597 (2006).

    Google Scholar 

  37. B. Wiley, Y. G. Sun, and Y. N. Xia, Acc. Chem. Res. 40, 1067 (2007).

    Google Scholar 

  38. Y. Xiong and Y. Xia, Adv. Mater. 19, 3385 (2007).

    Google Scholar 

  39. J.-M. Zhang, F. Ma, and K.-W. Xu, Appl. Surf. Sci. 229, 34 (2004).

    Google Scholar 

  40. A. Pimpinelli and J. Villain, Physics of Crystal Growth (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  41. P. M. Ajayan and L. D. Marks, Phys. Rev. Lett. 60, 585 (1988).

    Google Scholar 

  42. C. L. Cleveland and U. Landman, J. Chem. Phys. 94, 7376 (1991).

    Google Scholar 

  43. V. Germain, J. Li, D. Ingert, Z. L. Wang, and M. P. Pileni, J. Phys. Chem. B 107, 8717 (2003).

    Google Scholar 

  44. Y. Zheng, J. Zeng, A. Ruditskiy, M. Liu, and Y. Xia, Chem. Mater. 26, 22 (2013).

    Google Scholar 

  45. H. Hofmeister, S. A. Nepijko, D. N. Ievlev, W. Schulze, and G. Ertl, J. Cryst. Growth 234, 773 (2002).

    Google Scholar 

  46. B. Li, R. Long, X. Zhong, Y. Bai, Z. Zhu, X. Zhang, M. Zhi, J. He, C. Wang, Z. Y. Li, and Y. Xiong, Small 8, 1710 (2012).

    Google Scholar 

  47. C. C. S. de Oliveira, R. A. Ando, and P. H. C. Camargo, Phys. Chem. Chem. Phys. 15, 1887 (2013).

    Google Scholar 

  48. B. J. Wiley, Y. Xiong, Z.-Y. Li, Y. Yin, and Y. Xia, Nano Lett. 6, 765 (2006).

    Article  Google Scholar 

  49. C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. N. Xia, Plasmonics 4, 171 (2009).

    Article  Google Scholar 

  50. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. N. Xia, J. Phys. Chem. B 110, 15666 (2006).

    Article  Google Scholar 

  51. C. Lofton and W. Sigmund, Adv. Funct. Mater. 15, 1197 (2005).

    Article  Google Scholar 

  52. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, Nano Lett. 3, 955 (2003).

    Article  Google Scholar 

  53. Y. G. Sun and Y. N. Xia, Adv. Mater. 14, 833 (2002).

    Google Scholar 

  54. B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Nano Lett. 4, 1733 (2004).

    Article  Google Scholar 

  55. I. Washio, Y. Xiong, Y. Yin, and Y. Xia, Adv. Mater. 18, 1745 (2006).

    Google Scholar 

  56. D. S. Kilin, O. V. Prezhdo, and Y. Xia, Chem. Phys. Lett. 458, 113 (2008).

    Article  Google Scholar 

  57. J. Zeng, X. Xia, M. Rycenga, P. Henneghan, Q. Li, and Y. Xia, Angew. Chem. Int. Ed. 50, 244 (2011).

    Google Scholar 

  58. X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, Adv. Mater. 25, 6313 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro H. C. Camargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Camargo, P., Rodrigues, T., da Silva, A., Wang, J. (2015). Controlled Synthesis: Nucleation and Growth in Solution. In: Xiong, Y., Lu, X. (eds) Metallic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-11304-3_2

Download citation

Publish with us

Policies and ethics