Skip to main content

Empirical Identification of Non-stationary Dynamics in Time Series of Recordings

  • Conference paper
  • 937 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8779))

Abstract

Non-stationarity time series are very common in physical, biological and in real-world systems in general, ranging from geophysics, econometrics or electroencephalography to logistics. Identifying, detecting and adapting learning algorithms to non-stationary environments is a fundamental task in many data mining scenarios; however it is often a major challenge for current methodologies. Data analysis in the context of time-varying statistical moments is a very active research direction in machine learning and in computational statistics; but theoretical insights into latent causes of non-stationarity in empirical data are very scarce. In this study, we evaluate the capacity of the trajectory classification error statistic in order to detect a significant variation in the underlying dynamics of data collected in multiple stages. We analysed qualitatively the conditions leading to observable changes in non-stationary data generated by Duffing non-linear oscillators; which are ubiquitous models of complex classification problems. Analyses are further benchmarked in a dataset consisting of atmospheric pollutants time series.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balaguer-Ballester, E., Tabas-Diaz, A., Budka, M.: Can we identify non-stationary dynamics of trial-to-trial variability? PLoS ONE 9, e95648 (2014)

    Article  Google Scholar 

  2. Balaguer-Ballester, E., Camps-Valls, G., Carrasco-Rodriguez, J.L., Soria-Olivas, E., del Valle-Tascon, S.: Effective one-day ahead prediction of hourly surface ozone concentrations in Eastern Spain using linear models and neural networks. Ecological Modelling 156, 27–41 (2002)

    Article  Google Scholar 

  3. Balaguer-Ballester, E., Lapish, C., Seamans, J., Durstewitz, D.: Attracting dynamics of frontal cortex ensembles during memory guided decision making. PLoS Computational Biology 7, e1002057 (2011)

    Article  MathSciNet  Google Scholar 

  4. Beck, J.M., Ma, W.J., Pitkow, X., Latham, P.E., Pouget, A.: Not noisy, just wrong: The role of suboptimal inference in behavioral variability. Neuron 74, 33–39 (2012)

    Article  Google Scholar 

  5. Blythe, D.A.J., von Bunau, P., Meinecke, F.C., Robert-Muller, K.: Feature extraction for change-point detection using stationary subspace analysis. IEEE Trans. Neural Networks 23, 631–643 (2012)

    Google Scholar 

  6. Bouchachia, A.: Incremental learning with multi-level adaptation. Neurocomputing 74, 1785–1799 (2011)

    Article  Google Scholar 

  7. Chen, J.S., Hu, N.J.: A frequency domain test for detecting nonstationary time series. Computational Statistics and Data Analysis (in press, 2014)

    Google Scholar 

  8. Du, J., Cui, M.: Solving the forced duffing equation with integral boundary conditions in the reproducing kernel space. International Journal of Computer Mathematics 87, 2088–2100 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Durstewitz, D., Balaguer-Ballester, E.: Statistical approaches for reconstructing neuro-cognitive dynamics from high-dimensional neural recordings. Neuroforum 1, 89–98 (2010)

    Article  Google Scholar 

  10. Feng, Z., Chen, G., Hsu, S.: A qualitative study of the damped duffing equation and applications. American Institute of Mathematical Sciences 6, 1097–1112 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Gomez-Sanchis, J., Martin-Guerrero, J.O., Soria-Olivas, E., Vila-Frances, J., Carrasco, J.L., del Valle-Tascon, S.: Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration. Atmospheric Environment 40, 6173–6180 (2006)

    Article  Google Scholar 

  12. Haraa, S., Kawaharaa, Y., Washioa, T., von Bnau, P., Tokunagac, T., Yumotod, K.: Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Networks 33, 7–20 (2012)

    Article  Google Scholar 

  13. Kuncheva, L.I., Rodriguez, J.J.: Interval feature extraction for classification of event-related potentials (erp) in eeg data analysis. Progress in Artificial Intelligence 2, 65–72 (2012)

    Article  Google Scholar 

  14. Masquelier, T.: Neural variability, or lack thereof. Frontiers in Comput. Neurosci. 7, 1–7 (2013)

    Article  Google Scholar 

  15. Nason, G.: A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. J. R. Statist. Soc. B 75, 879–904 (2013)

    Article  MathSciNet  Google Scholar 

  16. Priestley, M.B., Subba, T.: A test for non-stationarity of time-series. J. R. Statist. Soc. B 31, 140–149 (1969)

    MATH  Google Scholar 

  17. Sauer, T., Yorke, J., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1992)

    Article  MathSciNet  Google Scholar 

  18. Sayed-Mouchaweh, M., Lughofer, E. (eds.): Learning in Non-Stationary Environments. Springer (2012)

    Google Scholar 

  19. Scholkopf, B., Smola, A.J.: Learning with kernels. MIT Press (2002)

    Google Scholar 

  20. von Bunau, P., Meinecke, F.C., Kiraly, F.J., Robert-Muller, K.: Finding stationary subspaces in multivariate time series. Phys. Rev. Lett. 103, 214101 (2009)

    Article  Google Scholar 

  21. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Springer (2013)

    Google Scholar 

  22. Zliobaite, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting streaming data. IEEE Transactions on Neural Networks and Learning Systems (2013) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Balaguer-Ballester, E., Tabas-Diaz, A., Budka, M. (2014). Empirical Identification of Non-stationary Dynamics in Time Series of Recordings. In: Bouchachia, A. (eds) Adaptive and Intelligent Systems. ICAIS 2014. Lecture Notes in Computer Science(), vol 8779. Springer, Cham. https://doi.org/10.1007/978-3-319-11298-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11298-5_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11297-8

  • Online ISBN: 978-3-319-11298-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics