Skip to main content

Design Principles for Single-Stranded RNA Origami Structures

  • Conference paper
DNA Computing and Molecular Programming (DNA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8727))

Included in the following conference series:

Abstract

We have recently introduced an experimental method for the design and production of RNA-origami nanostructures that fold up from a single strand while the RNA is being enzymatically produced, commonly referred to as cotranscriptional folding. To realize a general and scalable architecture we have developed a theoretical framework for determining RNA crossover geometries, long-distance interactions, and strand paths that are topologically compatible with cotranscriptional folding. Here, we introduce a simple parameterized model for the A-form helix and use it to determine the geometry and base-pair spacing for the five types of RNA double-crossover molecules and the curvature resulting from crossovers between multiple helices. We further define a set of paranemic loop-loop and end-to-end interactions compatible with the design of folding paths for RNA structures with arbitrary shape and programmable curvature. Finally, we take inspiration from space-filling curves in mathematics to design strand paths that have high-locality, programmed folding kinetics to avoid topological traps, and structural repeat units that might be used to create infinite RNA ribbons and squares by rolling circle transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonin, K.A., Cieply, D.J., Leontis, N.B.: Specific RNA self-assembly with minimal paranemic motifs. Journal of the American Chemical Society 130, 93–102 (2008)

    Article  Google Scholar 

  2. Andersen, E.S.: Prediction and design of DNA and RNA structures. New Biotechnology 27, 184–193 (2010)

    Article  Google Scholar 

  3. Arnott, S., Hukins, D.W., Dover, S.D., Fuller, W., Hodgson, A.R.: Structures of synthetic polynucleotides in the A-RNA and A’-RNA conformations: x-ray diffraction analyses of the molecular conformations of polyadenylic acid–polyuridylic acid and polyinosinic acid–polycytidylic acid. Journal of Molecular Biology 81, 107–122 (1973)

    Article  Google Scholar 

  4. Costa, M., Michel, F.: Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. The EMBO Journal 16, 3289–3302 (1997)

    Article  Google Scholar 

  5. Delebecque, C.J., Lindner, A.B., Silver, P.A., Aldaye, F.A.: Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011)

    Article  Google Scholar 

  6. Dickerson, R.E., Drew, H.R., Conner, B.N., Wing, R.M., Fratini, A.V., Kopka, M.L.: The anatomy of A-, B-, and Z-DNA. Science 216, 475–485 (1982)

    Article  Google Scholar 

  7. Drew, H.R., Wing, R.M., Takano, T., Broka, C., Tanaka, S., Itakura, K., Dickerson, R.E.: Structure of a B-DNA dodecamer: conformation and dynamics. Proceedings of the National Academy of Sciences of the United States of America 78, 2179–2183 (1981)

    Article  Google Scholar 

  8. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C., Dumas, P.: Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat. Struct. Biol. 12, 1064–1068 (2001)

    Article  Google Scholar 

  9. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993)

    Article  Google Scholar 

  10. Geary, C., Baudrey, S., Jaeger, L.: Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Research 36, 1138–1152 (2008)

    Article  Google Scholar 

  11. Geary, C., Chworos, A., Jaeger, L.: Promoting RNA helical stacking via A-minor junctions. Nucleic Acids Research 39, 1066–1080 (2011)

    Article  Google Scholar 

  12. Geary, C.W., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for cotranscriptionally folded RNA tiles. Accepted in Science (2014)

    Google Scholar 

  13. Grabow, W.W., Jaeger, L.: RNA Self-Assembly and RNA Nanotechnology. Accounts of Chemical Research (2014)

    Google Scholar 

  14. Hao, C., Li, X., Tian, C., Jiang, W., Wang, G., Mao, C.: Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nature Communications 5, 3890 (2014)

    Google Scholar 

  15. Jaeger, L., Westhof, E., Leontis, N.B.: TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Research 29, 455–463 (2001)

    Article  Google Scholar 

  16. Jossinet, F., Ludwig, T.E., Westhof, E.: Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26, 2057–2059 (2010)

    Article  Google Scholar 

  17. Ko, S.H., et al.: Synergistic self-assembly of RNA and DNA molecules. Nature Chemistry 2, 1050–1055 (2010)

    Article  Google Scholar 

  18. Larson, M.H., et al.: A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344, 1042 (2014)

    Article  Google Scholar 

  19. Lee, A.J., Crothers, D.M.: The solution structure of an RNA loop-loop complex: the ColE1 inverted loop sequence. Structure 6, 993–1007 (1998)

    Article  Google Scholar 

  20. Lee, J.B., Hong, J., Bonner, D.K., Poon, Z., Hammond, P.T.: Self-assembled RNA interference microsponges for efficient siRNA delivery. Nature Materials 11, 316–322 (2012)

    Article  Google Scholar 

  21. Lin, C., Wang, X., Liu, Y., Seeman, N.C., Yan, H.: Rolling circle enzymatic replication of a complex multi-crossover DNA nanostructure. Journal of the American Chemical Society 129, 14475–14481 (2007)

    Article  Google Scholar 

  22. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  23. Severcan, I., Geary, C., Chworos, A., Voss, N., Jacovetty, E., Jaeger, L.: A polyhedron made of tRNAs. Nature Chemistry 2, 772–779 (2010)

    Article  Google Scholar 

  24. Sherman, W.B., Seeman, N.C.: Design of minimally strained nucleic Acid nanotubes. Biophysical Journal 90, 4546–4557 (2006)

    Article  Google Scholar 

  25. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004)

    Article  Google Scholar 

  26. Wang, J.C.: Helical repeat of DNA in solution. Proceedings of the National Academy of Sciences of the United States of America 76, 200–203 (1979)

    Article  Google Scholar 

  27. Woo, S., Rothemund, P.W.: Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chemistry 3, 620–627 (2011)

    Article  Google Scholar 

  28. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)

    Article  Google Scholar 

  29. Yoffe, A.M., Prinsen, P., Gelbart, W.M., Ben-Shaul, A.: The ends of a large RNA molecule are necessarily close. Nucleic Acids Research 39, 292–299 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Geary, C.W., Andersen, E.S. (2014). Design Principles for Single-Stranded RNA Origami Structures. In: Murata, S., Kobayashi, S. (eds) DNA Computing and Molecular Programming. DNA 2014. Lecture Notes in Computer Science, vol 8727. Springer, Cham. https://doi.org/10.1007/978-3-319-11295-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11295-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11294-7

  • Online ISBN: 978-3-319-11295-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics