Skip to main content

Membrane Rafts in the Erythrocyte Membrane: A Novel Role of MPP1p55

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 842))

Abstract

Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. They are enriched in sphingolipids and cholesterol and contain several types of membrane proteins such as stomatin and flotillins, which are their “permanent” residents, along with several others, such as receptors, including growth factor receptors.

Membrane rafts in the mature erythrocyte are not the remnants from erythroid precursor cell(s), but are real and dynamic domains functioning within the membrane, helping to fulfil physiological roles, of which only a few of them are just now being recognized.

The important question is the presence and role of the MPP1 protein in these domains in erythroid cells. It was well known that this was a major palmitoylation target in erythrocytes. Here we review data indicating that (palmitoylated) MPP1 functions as an organizer of membrane rafts in erythroid cells. This conclusion is strengthened by the fact that a lack of MPP1 palmitoylation, resulting from an absence of DHHC17, the only erythroid palmitoyltransferase, leads to the unique pathology of human organism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a ZO1:

A mammalian zonula occludens protein

DlgA:

A Drosophila disc large tumor suppressor

DRM:

Detergent resistant membrane

FLIM Fluorescence  lifetime imaging L27:

Lin-2 and Lin-7 receptor targeting proteins

ld:

Liquid disordered

lo:

Liquid ordered

MAGUK:

Membrane associated guanylate kinase

MPP1:

Membrane palmitoylated protein-1

PC:

Phosphatidylcholine

PDZ PSD:

Post synaptic density protein

PE:

Phosphatidylethanolamine

PS:

Phosphatidylserine

SH3:

Src homology 3 domain

SM:

Sphingomyelin

References

  • Allan D, Thomas P, Limbrick AR (1980) The isolation and characterization of 60 nm vesicles (‘nanovesicles’) produced during ionophore A23187-induced budding of human erythrocytes. Biochem J 188(3):881–887

    Article  CAS  Google Scholar 

  • Aydar E, Palmer CP, Djamgoz MB (2004) Sigma receptors and cancer: possible involvement of ion channels. Cancer Res 64(15):5029–5035. doi:10.1158/0008-5472.CAN-03-2329

    Article  CAS  PubMed  Google Scholar 

  • Babina IS, McSherry EA, Donatello S, Hill AD, Hopkins AM (2014) A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res 16(1):R19. doi:10.1186/bcr3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes NC, Powell MS, Trist HM, Gavin AL, Wines BD, Hogarth PM (2006) Raft localisation of FcgammaRIIa and efficient signaling are dependent on palmitoylation of cysteine 208. Immunol Lett 104(1–2):118–123. doi:10.1016/j.imlet.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  • Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277(40):36991–37000

    Article  CAS  Google Scholar 

  • Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti MP, Lodish HF (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem 272(21):13793–13802

    Article  CAS  Google Scholar 

  • Biernatowska A, Podkalicka J, Majkowski M, Hryniewicz-Jankowska A, Augoff K, Kozak K, Korzeniewski J, Sikorski AF (2013) The role of MPP1/p55 and its palmitoylation in resting state raft organization in HEL cells. Biochim Biophys Acta 1833(8):1876–1884. doi:10.1016/j.bbamcr.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  • Biswas D, Sen G, Sarkar A, Biswas T (2011) Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats. Toxicol Appl Pharmacol 250(1):39–53. doi:10.1016/j.taap.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  • Boggon TJ, Eck MJ (2004) Structure and regulation of Src family kinases. Oncogene 23(48):7918–7927. doi:10.1038/sj.onc.1208081

    Article  CAS  PubMed  Google Scholar 

  • Boguslawska DM, Machnicka B, Sikorski AF (2010) Hereditary stomatocytoses—diagnostic problems and their molecular basis. Pol Merkur Lekarski 29(170):119–124

    PubMed  Google Scholar 

  • Boguslawska DM, Machnicka B, Hryniewicz-Jankowska A, Czogalla A (2014) Spectrin and phospholipids—the current picture of their fascinating interplay. Cell Mol Biol Lett 19(1):158–179. doi:10.2478/s11658-014-0185-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand J, Smith ES, Schwefel D, Lapatsina L, Poole K, Omerbasic D, Kozlenkov A, Behlke J, Lewin GR, Daumke O (2012) A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO J 31(17):3635–3646. doi:10.1038/emboj.2012.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17(8):394–402. doi:10.1016/j.tcb.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224. doi:10.1074/jbc.R000005200

    Article  CAS  PubMed  Google Scholar 

  • Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci U S A 103(8):2641–2646. doi:10.1073/pnas.0511136103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charollais J, Van Der Goot FG (2009) Palmitoylation of membrane proteins (Review). Mol Membr Biol 26(1):55–66

    Article  CAS  Google Scholar 

  • Chi CN, Haq SR, Rinaldo S, Dogan J, Cutruzzola F, Engstrom A, Gianni S, Lundstrom P, Jemth P (2012) Interactions outside the boundaries of the canonical binding groove of a PDZ domain influence ligand binding. Biochemistry 51(44):8971–8979. doi:10.1021/bi300792h

    Article  CAS  PubMed  Google Scholar 

  • de Mendoza A, Suga H, Ruiz-Trillo I (2010) Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol 10:93. doi:10.1186/1471-2148-10-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162. doi:10.1038/nature07596

    Article  CAS  PubMed  Google Scholar 

  • Epand RM (2006) Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 45(4):279–294. doi:10.1016/j.plipres.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Sayer BG, Epand RF (2005) Caveolin scaffolding region and cholesterol-rich domains in membranes. J Mol Biol 345(2):339–350. doi:10.1016/j.jmb.2004.10.064

    Article  CAS  PubMed  Google Scholar 

  • Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4:31. doi:10.3389/fphys.2013.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feig C, Tchikov V, Schutze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26(1):221–231

    Article  CAS  Google Scholar 

  • Fricke B, Parsons SF, Knopfle G, von During M, Stewart GW (2005) Stomatin is mis-trafficked in the erythrocytes of overhydrated hereditary stomatocytosis, and is absent from normal primitive yolk sac-derived erythrocytes. Br J Haematol 131(2):265–277. doi:10.1111/j.1365-2141.2005.05742.x

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Kinoshita T (2010) Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett 584(9):1670–1677, S0014-5793(09)00871-0 [pii]10.1016/j.febslet.2009.10.079

    Article  CAS  Google Scholar 

  • Gosens I, van Wijk E, Kersten FF, Krieger E, van der Zwaag B, Marker T, Letteboer SJ, Dusseljee S, Peters T, Spierenburg HA, Punte IM, Wolfrum U, Cremers FP, Kremer H, Roepman R (2007) MPP1 links the Usher protein network and the Crumbs protein complex in the retina. Hum Mol Genet 16(16):1993–2003. doi:10.1093/hmg/ddm147

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R, Chadda R, Vishwakarma R, Rao M, Mayor S (2008) Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135(6):1085–1097. doi:10.1016/j.cell.2008.11.032

    Article  CAS  PubMed  Google Scholar 

  • Grzybek M, Kozubek A, Dubielecka P, Sikorski AF (2005) Rafts—the current picture. Folia Histochem Cytobiol 43(1):3–10

    CAS  PubMed  Google Scholar 

  • Grzybek M, Kubiak J, Lach A, Przybylo M, Sikorski AF (2009) A raft-associated species of phosphatidylethanolamine interacts with cholesterol comparably to sphingomyelin. A Langmuir-Blodgett monolayer study. PLoS One 4(3):e5053

    Article  Google Scholar 

  • Hakomori SI (2002) The glycosynapse. Proc Natl Acad Sci U S A 99(1):225–232. doi:10.1073/pnas.012540899

    Article  CAS  PubMed Central  Google Scholar 

  • Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7(6):456–462. doi:10.1038/nrm1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanus-Lorenz B, Hryniewicz-Jankowska A, Leluk J, Lorenz M, Skala J, Sikorski AF (2001) Spectrin motifs are detected in plant and yeast genomes. Cell Mol Biol Lett 6(2):207

    PubMed  Google Scholar 

  • He HT, Marguet D (2011) Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu Rev Phys Chem 62:417–436. doi:10.1146/annurev-physchem-032210-103402

    Article  CAS  PubMed  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811

    Article  CAS  Google Scholar 

  • Hemming NJ, Anstee DJ, Staricoff MA, Tanner MJ, Mohandas N (1995) Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J Biol Chem 270(10):5360–5366

    Article  CAS  Google Scholar 

  • Hiebl-Dirschmied CM, Adolf GR, Prohaska R (1991a) Isolation and partial characterization of the human erythrocyte band 7 integral membrane protein. Biochim Biophys Acta 1065(2):195–202

    Article  CAS  Google Scholar 

  • Hiebl-Dirschmied CM, Entler B, Glotzmann C, Maurer-Fogy I, Stratowa C, Prohaska R (1991b) Cloning and nucleotide sequence of cDNA encoding human erythrocyte band 7 integral membrane protein. Biochim Biophys Acta 1090(1):123–124

    Article  CAS  Google Scholar 

  • Hryniewicz-Jankowska A, Augoff K, Biernatowska A, Podkalicka J, Sikorski AF (2014) Membrane rafts as a novel target in cancer therapy. Biochim Biophys Acta 1845(2):155–165. doi:10.1016/j.bbcan.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  • Hummel I, Klappe K, Ercan C, Kok JW (2011) Multidrug resistance-related protein 1 (MRP1) function and localization depend on cortical actin. Mol Pharmacol 79(2):229–240. doi:10.1124/mol.110.069013

    Article  CAS  PubMed  Google Scholar 

  • Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    Article  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9(1):7–14. doi:10.1038/ncb0107-7

    Article  CAS  PubMed  Google Scholar 

  • Kadurin I, Huber S, Grunder S (2009) A single conserved proline residue determines the membrane topology of stomatin. Biochem J 418(3):587–594. doi:10.1042/BJ20081662

    Article  CAS  PubMed  Google Scholar 

  • Kamata K, Manno S, Ozaki M, Takakuwa Y (2008) Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction. Am J Hematol 83(5):371–375. doi:10.1002/ajh.21126

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD (1982) The concept of lipid domains in membranes. J Cell Biol 94(1):1–6

    Article  CAS  Google Scholar 

  • Korycka J, Lach A, Heger E, Boguslawska DM, Wolny M, Toporkiewicz M, Augoff K, Korzeniewski J, Sikorski AF (2012) Human DHHC proteins: a spotlight on the hidden player of palmitoylation. Eur J Cell Biol 91(2):107–117. doi:10.1016/j.ejcb.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  • Koshino I, Takakuwa Y (2009) Disruption of lipid rafts by lidocaine inhibits erythrocyte invasion by Plasmodium falciparum. Exp Parasitol 123(4):381–383. doi:10.1016/j.exppara.2009.08.019

    Article  CAS  PubMed  Google Scholar 

  • Koumanov KS, Tessier C, Momchilova AB, Rainteau D, Wolf C, Quinn PJ (2005) Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch Biochem Biophys 434(1):150–158. doi:10.1016/j.abb.2004.10.025

    Article  CAS  PubMed  Google Scholar 

  • Lach A, Grzybek M, Heger E, Korycka J, Wolny M, Kubiak J, Kolondra A, Boguslawska DM, Augoff K, Majkowski M, Podkalicka J, Kaczor J, Stefanko A, Kuliczkowski K, Sikorski AF (2012) Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J Biol Chem 287(23):18974–18984. doi:10.1074/jbc.M111.332981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lande WM, Thiemann PV, Mentzer WC Jr (1982) Missing band 7 membrane protein in two patients with high Na, low K erythrocytes. J Clin Invest 70(6):1273–1280

    Article  CAS  Google Scholar 

  • Lang DM, Lommel S, Jung M, Ankerhold R, Petrausch B, Laessing U, Wiechers MF, Plattner H, Stuermer CA (1998) Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol 37(4):502–523

    Article  CAS  Google Scholar 

  • Levental I, Byfield FJ, Chowdhury P, Gai F, Baumgart T, Janmey PA (2009) Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem J 424(2):163–167. doi:10.1042/BJ20091283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Deyoung SM, Zhang M, Dold LH, Saltiel AR (2005) The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J Biol Chem 280(16):16125–16134. doi:10.1074/jbc.M500940200

    Article  CAS  PubMed  Google Scholar 

  • Macdonald JL, Pike LJ (2005) A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res 46(5):1061–1067. doi:10.1194/jlr.D400041-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Machnicka B, Grochowalska R, Boguslawska DM, Sikorski AF, Lecomte MC (2012) Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci 69(2):191–201. doi:10.1007/s00018-011-0804-5

    Article  CAS  PubMed  Google Scholar 

  • Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska DM, Grochowalska R, Heger E, Sikorski AF (2014) Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta 1838(2):620–634. doi:10.1016/j.bbamem.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  • Mahfoud R, Garmy N, Maresca M, Yahi N, Puigserver A, Fantini J (2002) Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J Biol Chem 277(13):11292–11296. doi:10.1074/jbc.M111679200

    Article  CAS  PubMed  Google Scholar 

  • Mandal D, Mazumder A, Das P, Kundu M, Basu J (2005) Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem 280(47):39460–39467. doi:10.1074/jbc.M506928200

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mukherjee S, Chowdhury KD, Sarkar A, Basu K, Paul S, Karmakar D, Chatterjee M, Biswas T, Sadhukhan GC, Sen G (2012) S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead. Biochim Biophys Acta 1820(1):9–23. doi:10.1016/j.bbagen.2011.09.019

    Article  CAS  PubMed  Google Scholar 

  • Maretzki D, Mariani M, Lutz HU (1990) Fatty acid acylation of membrane skeletal proteins in human erythrocytes. FEBS Lett 259(2):305–310

    Article  CAS  Google Scholar 

  • Marfatia SM, Leu RA, Branton D, Chishti AH (1995) Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein. J Biol Chem 270(2):715–719

    Article  CAS  Google Scholar 

  • Marfatia SM, Morais-Cabral JH, Kim AC, Byron O, Chishti AH (1997) The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis. J Biol Chem 272(39):24191–24197

    Article  CAS  Google Scholar 

  • Margetis P, Antonelou M, Karababa F, Loutradi A, Margaritis L, Papassideri I (2007) Physiologically important secondary modifications of red cell membrane in hereditary spherocytosis-evidence for in vivo oxidation and lipid rafts protein variations. Blood Cells Mol Dis 38(3):210–220. doi:10.1016/j.bcmd.2006.10.163

    Article  CAS  PubMed  Google Scholar 

  • Mayor S, Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5(4):231–240

    Article  CAS  Google Scholar 

  • Mburu P, Kikkawa Y, Townsend S, Romero R, Yonekawa H, Brown SD (2006) Whirlin complexes with p55 at the stereocilia tip during hair cell development. Proc Natl Acad Sci U S A 103(29):10973–10978. doi:10.1073/pnas.0600923103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh TJ, Vidal A, Simon SA (2003) Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. Biophys J 85(3):1656–1666. doi:10.1016/S0006-3495(03)74595-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhalyov I, Samsonov A (2011) Lipid raft detecting in membranes of live erythrocytes. Biochim Biophys Acta 1808(7):1930–1939. doi:10.1016/j.bbamem.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  • Morrow IC, Rea S, Martin S, Prior IA, Prohaska R, Hancock JF, James DE, Parton RG (2002) Flotillin-1/reggie-2 traffics to surface raft domains via a novel golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem 277(50):48834–48841. doi:10.1074/jbc.M209082200

    Article  CAS  PubMed  Google Scholar 

  • Murphy SC, Samuel BU, Harrison T, Speicher KD, Speicher DW, Reid ME, Prohaska R, Low PS, Tanner MJ, Mohandas N, Haldar K (2004) Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood 103(5):1920–1928. doi:10.1182/blood-2003-09-3165

    Article  CAS  PubMed  Google Scholar 

  • Murphy SC, Harrison T, Hamm HE, Lomasney JW, Mohandas N, Haldar K (2006) Erythrocyte G protein as a novel target for malarial chemotherapy. PLoS Med 3(12):e528. doi:10.1371/journal.pmed.0030528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy SC, Fernandez-Pol S, Chung PH, Prasanna Murthy SN, Milne SB, Salomao M, Brown HA, Lomasney JW, Mohandas N, Haldar K (2007) Cytoplasmic remodeling of erythrocyte raft lipids during infection by the human malaria parasite Plasmodium falciparum. Blood 110(6):2132–2139. doi:10.1182/blood-2007-04-083873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Lerida I, Sanchez-Perales S, Calvo M, Rentero C, Zheng Y, Enrich C, Del Pozo MA (2012) A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J 31(3):534–551. doi:10.1038/emboj.2011.446emboj2011446 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, Stuermer CA, Herzog V, Tikkanen R (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378(Pt 2):509–518. doi:10.1042/BJ20031100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan CQ, Sudol M, Sheetz M, Low BC (2012) Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 24(11):2143–2165. doi:10.1016/j.cellsig.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44(4):655–667. doi:10.1194/jlr.R200021-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598. doi:10.1194/jlr.E600002-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ, Han X, Gross RW (2005) Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J Biol Chem 280(29):26796–26804. doi:10.1074/jbc.M503805200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn PJ, Tessier C, Rainteau D, Koumanov KS, Wolf C (2005) Structure and thermotropic phase behaviour of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Biochim Biophys Acta 1713(1):5–14. doi:10.1016/j.bbamem.2005.04.013

    Article  CAS  PubMed  Google Scholar 

  • Quinn BJ, Welch EJ, Kim AC, Lokuta MA, Huttenlocher A, Khan AA, Kuchay SM, Chishti AH (2009) Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity. Proc Natl Acad Sci U S A 106(47):19842–19847. doi:10.1073/pnas.0906761106

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathenberg J, Kittler JT, Moss SJ (2004) Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol Cell Neurosci 26(2):251–257

    Article  CAS  Google Scholar 

  • Rodgers W, Glaser M (1991) Characterization of lipid domains in erythrocyte membranes. Proc Natl Acad Sci U S A 88(4):1364–1368

    Article  CAS  Google Scholar 

  • Ruff P, Speicher DW, Husain-Chishti A (1991) Molecular identification of a major palmitoylated erythrocyte membrane protein containing the src homology 3 motif. Proc Natl Acad Sci U S A 88(15):6595–6599

    Article  CAS  Google Scholar 

  • Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97(4):1141–1143

    Article  CAS  Google Scholar 

  • Salzer U, Hinterdorfer P, Hunger U, Borken C, Prohaska R (2002) Ca(++)-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood 99(7):2569–2577

    Article  CAS  Google Scholar 

  • Sanchez SA, Tricerri MA, Gratton E (2012) Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci U S A 109(19):7314–7319. doi:10.1073/pnas.1118288109

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroeder F, Woodford JK, Kavecansky J, Wood WG, Joiner C (1995) Cholesterol domains in biological membranes. Mol Membr Biol 12(1):113–119

    Article  CAS  Google Scholar 

  • Seo PS, Jeong JJ, Zeng L, Takoudis CG, Quinn BJ, Khan AA, Hanada T, Chishti AH (2009a) Alternatively spliced exon 5 of the FERM domain of protein 4.1R encodes a novel binding site for erythrocyte p55 and is critical for membrane targeting in epithelial cells. Biochim Biophys Acta 1793(2):281–289. doi:10.1016/j.bbamcr.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  • Seo PS, Quinn BJ, Khan AA, Zeng L, Takoudis CG, Hanada T, Bolis A, Bolino A, Chishti AH (2009b) Identification of erythrocyte p55/MPP1 as a binding partner of NF2 tumor suppressor protein/Merlin. Exp Biol Med 234(3):255–262. doi:10.3181/0809-RM-275

    Article  CAS  Google Scholar 

  • Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116(4):577–589

    Article  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572. doi:10.1038/42408

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697. doi:10.1101/cshperspect.a004697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295. doi:10.1146/annurev.biophys.32.110601.141803

    Article  CAS  PubMed  Google Scholar 

  • Snyers L, Umlauf E, Prohaska R (1999) Cysteine 29 is the major palmitoylation site on stomatin. FEBS Lett 449(2–3):101–104

    Article  CAS  Google Scholar 

  • Solis GP, Hoegg M, Munderloh C, Schrock Y, Malaga-Trillo E, Rivera-Milla E, Stuermer CA (2007) Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem J 403(2):313–322. doi:10.1042/BJ20061686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staubach S, Hanisch FG (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics 8(2):263–277. doi:10.1586/epr.11.2

    Article  CAS  PubMed  Google Scholar 

  • te Velthuis AJ, Admiraal JF, Bagowski CP (2007) Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol Biol 7:129. doi:10.1186/1471-2148-7-129

    Article  CAS  Google Scholar 

  • Umlauf E, Mairhofer M, Prohaska R (2006) Characterization of the stomatin domain involved in homo-oligomerization and lipid raft association. J Biol Chem 281(33):23349–23356. doi:10.1074/jbc.M513720200

    Article  CAS  PubMed  Google Scholar 

  • Wang TY, Leventis R, Silvius JR (2000) Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains: a model for molecular partitioning into “lipid rafts”. Biophys J 79(2):919–933. doi:10.1016/S0006-3495(00)76347-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson DK, Turner EJ, Parkin ET, Garner AE, Harrison PJ, Crawford M, Stewart GW, Hooper NM (2008) Membrane raft actin deficiency and altered Ca2+-induced vesiculation in stomatin-deficient overhydrated hereditary stomatocytosis. Biochim Biophys Acta 1778(1):125–132. doi:10.1016/j.bbamem.2007.09.016

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR (2010) Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics 9(1):54–70. doi:10.1074/mcp.M800448-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Fujii S, Matsui I (2008) Crystal structure of a core domain of stomatin from Pyrococcus horikoshii illustrates a novel trimeric and coiled-coil fold. J Mol Biol 376(3):868–878. doi:10.1016/j.jmb.2007.12.024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander F. Sikorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sikorski, A.F., Podkalicka, J., Jones, W., Biernatowska, A. (2015). Membrane Rafts in the Erythrocyte Membrane: A Novel Role of MPP1p55. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_5

Download citation

Publish with us

Policies and ethics