Skip to main content

Defects in Erythrocyte Membrane Skeletal Architecture

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 842))

Abstract

The structure and function of membrane skeleton (MS) is gaining its significance in the recent years. Considerable development has been made in our understanding of the role of the many erythrocyte MS proteins in regulating normal and pathologic features of erythrocyte membrane physiology. This review focuses on erythrocyte MS, its organization, protein-protein and protein lipid interactions. Various functions of MS and their alterations are also dealt here. The molecular defects that result in the most common erythrocyte membrane disorder, hereditary spherocytosis and the diverse defect that produce hereditary elliptocytosis are briefly described here. The most common molecular lesions in these erythrocyte phenotypes involve mutations in α and β-spectrin genes; ankyrin, band 3, 4.1R, 4.2 and Glycophorin C can also produce such hereditary hemolytic disorders. Finally, we have explored MS alterations induced by the malarial parasite, Plasmodium falciparum, in the infected erythrocytes. This review article attests to the enormous progress in our understanding of the contribution of erythrocyte membrane skeletal proteins to human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agre P, Orringer EP, Bennett V (1982) Deficient red-cell spectrin in severe, recessively inherited spherocytosis. N Engl J Med 306:1155–1161

    CAS  PubMed  Google Scholar 

  • Agre P, Casella JF, Zinkham WH, Mcmillan C, Bennett V (1985) Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. Nature 314:380–383

    CAS  PubMed  Google Scholar 

  • Beck KA, Nelson WJ (1998) A spectrin membrane skeleton of the Golgi complex. Biochim Biophys Acta 1404:153–160

    CAS  PubMed  Google Scholar 

  • Bennett V (1979) Immunoreactive forms of human-erythrocyte ankyrin are present in diverse cells and tissues. Nature 281:597–599

    CAS  PubMed  Google Scholar 

  • Bennett V (1985) The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem 54:273–304

    CAS  PubMed  Google Scholar 

  • Bennett V, Stenbuck PJ (1979a) Identification and partial-purification of ankyrin, the high-affinity membrane attachment site for human-erythrocyte spectrin. J Biol Chem 254:2533–2541

    CAS  PubMed  Google Scholar 

  • Bennett V, Stenbuck PJ (1979b) Membrane attachment protein for spectrin is associated with band-3 in human-erythrocyte membranes. Nature 280:468–473

    CAS  PubMed  Google Scholar 

  • Bennett V, Stenbuck PJ (1980) Association between ankyrin and the cytoplasmic domain of band-3 isolated from the human-erythrocyte membrane. J Biol Chem 255:6424–6432

    CAS  PubMed  Google Scholar 

  • Bennett V, Davis J, Fowler WE (1982) Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature 299:126–131

    CAS  PubMed  Google Scholar 

  • Chishti AH, Maalouf GJ, Marfatia S, Palek J, Wang W, Fisher D, Liu SC (1994) Phosphorylation of protein-4.1 in plasmodium-falciparum-infected human red-blood-cells. Blood 83:3339–3345

    CAS  PubMed  Google Scholar 

  • Coetzer T, Lawler J, Prchal JT, Palek J (1987) Molecular determinants of clinical expression of hereditary elliptocytosis and pyropoikilocytosis. Blood 70:766–772

    CAS  PubMed  Google Scholar 

  • Coetzer T, Palek J, Lawler J, Liu SC, Jarolim P, Lahav M, Prchal JT, Wang W, Alter BP, Schewitz G, Mankad V, Gallanello R, Cao A (1990) Structural and functional-heterogeneity of alpha-spectrin mutations involving the spectrin heterodimer self-association site—relationships to hematologic expression of homozygous hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood 75:2235–2244

    CAS  PubMed  Google Scholar 

  • Coetzer TL, Sahr K, Prchal J, Blacklock H, Peterson L, Koler R, Doyle J, Manaster J, Palek J (1991) Four different mutations in codon 28 of alpha-spectrin are associated with structurally and functionally abnormal spectrin alpha-i/74 in hereditary elliptocytosis. J Clin Invest 88:743–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conboy JG, Chasis JA, Winardi R, Tchernia G, Kan YW, Mohandas N (1993) An isoform-specific mutation in the protein 4.1 gene results in hereditary elliptocytosis and complete deficiency of protein 4.1 in erythrocytes but not in nonerythroid cells. J Clin Invest 91:77–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke BM, Mohandas N, Coppel RL (2001) The malaria-infected red blood cell: structural and functional changes. Adv Parasitol 50:1–86

    CAS  PubMed  Google Scholar 

  • Cooke BM, Mohandas N, Coppel RL (2004) Malaria and the red blood cell membrane. Semin Hematol 41:173–188

    PubMed  Google Scholar 

  • Cooke BM, Buckingham DW, Glenister FK, Fernandez KM, Bannister LH, Marti M, Mohandas N, Coppel RL (2006) A Maurer’s cleft-associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. J Cell Biol 172:899–908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett JD, Agre P, Palek J, Golan DE (1994) Differential control of band-3 lateral and rotational mobility in intact red-cells. J Clin Invest 94:683–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Costa L, Galimand J, Fenneteau O, Mohandas N (2013) Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 27:167–178

    PubMed  Google Scholar 

  • Dalla Venezia N, Maillet P, Morle L, Roda L, Delaunay J, Baklouti F (1998) A large deletion within the protein 4.1 gene associated with a stable truncated mRNA and an unaltered tissue-specific alternative splicing. Blood 91:4361–4367

    CAS  Google Scholar 

  • del Giudice EM, Lombardi C, Francese M, Nobili B, Conte ML, Amendola G, Cutillo S, Iolascon A, Perrotta S (1998) Frequent de novo monoallelic expression of beta-spectrin gene (SPTB) in children with hereditary spherocytosis and isolated spectrin deficiency. Br J Haematol 101:251–254

    Google Scholar 

  • del Giudice EM, Nobili B, Francese M, D’Urso L, Iolascon A, Eber S, Perrotta S (2001) Clinical and molecular evaluation of non-dominant hereditary spherocytosis. Br J Haematol 112:42–47

    Google Scholar 

  • Delaunay J, Dhermy D (1993) Mutations involving the spectrin heterodimer contact site—clinical expression and alterations in specific function. Semin Hematol 30:21–33

    CAS  PubMed  Google Scholar 

  • delGiudice EM, Hayette S, Bozon M, Perrotta S, Alloisio N, Vallier A, Iolascon A, Delaunay T, Morle L (1996) Ankyrin Napoli: A de novo deletional frameshift mutation in exon 16 of ankyrin gene (ANK1) associated with spherocytosis. Br J Haematol 93:828–834

    CAS  Google Scholar 

  • Demiralp DO, Peker S, Turgut B, Akar N (2012) Comprehensive identification of erythrocyte membrane protein deficiency by 2D gel electrophoresis based proteomic analysis in hereditary elliptocytosis and spherocytosis. Proteomics Clin Appl 6:403–411

    CAS  PubMed  Google Scholar 

  • Derick LH, Liu SC, Chishti AH, Palek J (1992) Protein immunolocalization in the spread erythrocyte-membrane skeleton. Eur J Cell Biol 57:317–320

    CAS  PubMed  Google Scholar 

  • Dhermy D, Galand C, Bournier O, Boulanger L, Cynober T, Schismanoff PO, Bursaux E, Tchernia G, Boivin P, Garbarz M (1997) Heterogenous band 3 deficiency in hereditary spherocytosis related to different band 3 gene defects. Br J Haematol 98:32–40 (vol 99, pg 474, 1997)

    CAS  PubMed  Google Scholar 

  • Discher D, Parra M, Conboy JG, Mohandas N (1993) Mechanochemistry of the alternatively spliced spectrin-actin binding domain in membrane skeletal protein-4.1. J Biol Chem 268:7186–7195

    CAS  PubMed  Google Scholar 

  • Eber S, Lux SE (2004) Hereditary spherocytosis—defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol 41:118–141

    CAS  PubMed  Google Scholar 

  • Fowler VM (1990) Tropomodulin—a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol 111:471–482

    CAS  PubMed  Google Scholar 

  • Fowler VM, Bennett V (1984) Erythrocyte-membrane tropomyosin—purification and properties. J Biol Chem 259:5978–5989

    CAS  PubMed  Google Scholar 

  • Gallagher PG (2004) Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol 41:142–164

    CAS  PubMed  Google Scholar 

  • Gallagher PG, Petruzzi MJ, Weed SA, Zhang ZS, Marchesi SL, Mohandas N, Morrow JS, Forget BG (1997) Mutation of a highly conserved residue of beta I spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 99:267–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner K, Bennett V (1987) Modulation of spectrin actin assembly by erythrocyte adducin. Nature 328:359–362

    CAS  PubMed  Google Scholar 

  • Giorgi M, Cianci CD, Gallagher PG, Morrow JS (2001) Spectrin oligomerization is cooperatively coupled to membrane assembly: a linkage targeted by many hereditary hemolytic anemias? Exp Mol Pathol 70:215–230

    CAS  PubMed  Google Scholar 

  • Greenwood BM, Fidock DA, Kyle DE, Kappe SHI, Alonso PL, Collins FH, Duffy PE (2008) Malaria: progress, perils, and prospects for eradication. J Clin Invest 118:1266–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanspal M, Yoon SH, Yu H, Hanspal JS, Lambert S, Palek J, Prchal JT (1991) Molecular-basis of spectrin and ankyrin deficiencies in severe hereditary spherocytosis—evidence implicating a primary defect of ankyrin. Blood 77:165–173

    CAS  PubMed  Google Scholar 

  • Hassoun H, Vassiliadis JN, Murray J, Yi SJ, Hanspal M, Ware RE, Winter SS, Chiou SS, Palek J (1995) Molecular basis of spectrin deficiency in beta spectrin durham—a deletion within beta spectrin adjacent to the ankyrin-binding site precludes spectrin attachment to the membrane in hereditary spherocytosis. J Clin Invest 96:2623–2629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husainchishti A, Faquin W, Wu CC, Branton D (1989) Purification of erythrocyte dematin (protein-4.9) reveals an endogenous protein-kinase that modulates actin-bundling activity. J Biol Chem 264:8985–8991

    CAS  Google Scholar 

  • Ipsaro JJ, Harper SL, Messick TE, Marmorstein R, Mondragon A, Speicher DW (2010) Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 115:4843–4852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahana E, Pinder JC, Smith KS, Gratzer WB (1992) Fluorescence quenching of spectrin and other red-cell membrane cytoskeletal proteins—relation to hydrophobic binding-sites. Biochem J 282:75–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki A, Hayette S, Morle L, Inoue F, Matsuyama R, Inoue T, Yawata A, Wada H, Vallier A, Alloisio N, Yawata Y, Delaunay J (1997) Total absence of protein 4.2 and partial deficiency of band 3 in hereditary spherocytosis. Br J Haematol 99:522–530

    CAS  PubMed  Google Scholar 

  • Khan AA, Hanada T, Mohseni M, Jeong JJ, Zeng LX, Gaetani M, Li DH, Reed BC, Speicher DW, Chishti AH (2008) Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1. J Biol Chem 283:14600–14609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koshino I, Mohandas N, Takakuwa Y (2012) Identification of a novel role for dematin in regulating red cell membrane function by modulating spectrin-actin interaction. J Biol Chem 287:35244–35250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlman PA, Hughes CA, Bennett V, Fowler VM (1996) A new function for adducin. Calicium calmodulin-regulated capping of the barbed ends of actin filaments. J Biol Chem 271:7986–7991

    CAS  PubMed  Google Scholar 

  • Kun JFJ, Hibbs AR, Saul A, McColl DJ, Coppel RL, Anders RF (1997) A putative Plasmodium falciparum exported serine/threonine protein kinase. Mol Biochem Parasitol 85:41–51

    CAS  PubMed  Google Scholar 

  • Lambert S, Conboy J, Zail S (1988) A molecular study of heterozygous protein 4.1 deficiency in hereditary elliptocytosis. Blood 72:1926–1929

    CAS  PubMed  Google Scholar 

  • Lazarides E, Woods C (1989) Biogenesis of the red blood cell membrane-skeleton and the control of erythroid morphogenesis. Annu Rev Cell Biol 5:427–452

    CAS  PubMed  Google Scholar 

  • Ling E, Danilov YN, Cohen CM (1988) Modulation of red-cell band-4.1 function by camp-dependent kinase and protein kinase-c phosphorylation. J Biol Chem 263:2209–2216

    CAS  PubMed  Google Scholar 

  • Liu SC, Derick LH, Palek J (1987) Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol 104:527–536

    CAS  PubMed  Google Scholar 

  • Liu SC, Derick LH, Palek J (1993) Dependence of the permanent deformation of red-blood-cell membranes on spectrin dimer tetramer equilibrium—implication for permanent membrane deformation of irreversibly sickled cells. Blood 81:522–528

    CAS  PubMed  Google Scholar 

  • Lustigman S, Anders RF, Brown GV, Coppel RL (1990) The mature-parasite-infected erythrocyte surface-antigen (Mesa) of Plasmodium-falciparum associates with the erythrocyte-membrane skeletal protein, band-4.1. Mol Biochem Parasitol 38:261–270

    CAS  PubMed  Google Scholar 

  • Macpherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA (1985) Human cerebral malaria—a quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 119:385–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mankelow TJ, Satchwell TJ, Burton NM (2012) Refined views of multi-protein complexes in the erythrocyte membrane. Blood Cells Mol Dis 49:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manno S, Takakuwa Y, Nagao K, Mohandas N (1995) Modulation of erythrocyte-membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. J Biol Chem 270:5659–5665

    CAS  PubMed  Google Scholar 

  • Marchesi VT (1985) Stabilizing infrastructure of cell-membranes. Annu Rev Cell Biol 1:531–561

    CAS  PubMed  Google Scholar 

  • Marfatia SM, Lue RA, Branton D, Chishti AH (1994) In-vitro binding-studies suggest a membrane-associated complex between erythroid P55, protein-4.1, and glycophorin-C. J Biol Chem 269:8631–8634

    CAS  PubMed  Google Scholar 

  • Mcguire M, Smith BL, Agre P (1988) Distinct variants of erythrocyte protein-4.1 inherited in linkage with elliptocytosis and Rh-type in 3 white families. Blood 72:287–293

    CAS  PubMed  Google Scholar 

  • Michalak K, Bobrowska M, Sikorski AF (1993) Interaction of bovine erythrocyte spectrin with aminophospholipid liposomes. Gen Physiol Biophys 12:163–170

    CAS  PubMed  Google Scholar 

  • Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673–679

    CAS  PubMed  Google Scholar 

  • Mohandas N, An X (2012) Malaria and human red blood cells. Med Microbiol Immunol 201:593–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohandas N, Chasis JA (1993) Red-blood-cell deformability, membrane material properties and shape—regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 30:171–192

    CAS  PubMed  Google Scholar 

  • Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriniere M, Ribeiro L, Dalla Venezia N, Deguillien M, Maillet P, Cynober T, Delhommeau F, Almeida H, Tamagnini G, Delaunay J, Baklouti F (2000) Elliptocytosis in patients with C-terminal domain mutations of protein 4.1 correlates with encoded messenger RNA levels rather than with alterations in primary protein structure. Blood 95:1834–1841

    CAS  PubMed  Google Scholar 

  • Murray MC, Perkins ME (1989) Phosphorylation of erythrocyte-membrane and cytoskeleton proteins in cells infected with Plasmodium-falciparum. Mol Biochem Parasitol 34:229–236

    CAS  PubMed  Google Scholar 

  • Ohanian V, Wolfe LC, John KM, Pinder JC, Lux SE, Gratzer WB (1984) Analysis of the ternary interaction of the red-cell membrane skeletal protein-spectrin, protein-actin, and protein 4.1. Biochemistry 23:4416–4420

    CAS  PubMed  Google Scholar 

  • Palek J, Jarolim P (1993) Cellular molecular-biology of Rbc membrane.4. Clinical expression and laboratory detection of red-blood-cell membrane-protein mutations. Semin Hematol 30:249–283

    CAS  PubMed  Google Scholar 

  • Palek J, Lambert S (1990) Genetics of the red-cell membrane skeleton. Semin Hematol 27:290–332

    CAS  PubMed  Google Scholar 

  • Pei XH, An XL, Guo XH, Tarnawski M, Coppel R, Mohandas N (2005) Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. J Biol Chem 280:31166–31171

    CAS  PubMed  Google Scholar 

  • Pei XH, Guo XH, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, Mohandas N, An XL (2007a) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110:1036–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei XH, Guo XH, Coppel R, Mohandas N, An XL (2007b) Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) destabilizes erythrocyte membrane skeleton. J Biol Chem 282:26754–26758

    CAS  PubMed  Google Scholar 

  • Peker S, Akar N, Demiralp DO (2012) Proteomic identification of erythrocyte membrane protein deficiency in hereditary spherocytosis. Mol Biol Rep 39:3161–3167

    CAS  PubMed  Google Scholar 

  • Polprasert C, Chiangjong W, Thongboonkerd V (2012) Marked changes in red cell membrane proteins in hereditary spherocytosis: a proteomics approach. Mol Biosyst 8:2312–2322

    CAS  PubMed  Google Scholar 

  • Randon J, delGiudice EM, Bozon M, Perrotta S, DeVivo M, Iolascon A, Delaunay J, Morle L (1997) Frequent de novo mutations of the ANK1 gene mimic a recessive mode of transmission in hereditary spherocytosis: three new ANK1 variants: Ankyrins Bari, Napoli II and Anzio. Br J Haematol 96:500–506

    CAS  PubMed  Google Scholar 

  • Rebuck JW, Van Slyck EJ (1968) An unsuspected ultrastructural fault in human elliptocytes. Am J Clin Pathol 49:19–25

    CAS  PubMed  Google Scholar 

  • Saha S, Ramanathan R, Basu A, Banerjee D, Chakrabarti A (2011) Elevated levels of redox regulators, membrane-bound globin chains, and cytoskeletal protein fragments in hereditary spherocytosis erythrocyte proteome. Eur J Haematol 87:259–266

    CAS  PubMed  Google Scholar 

  • Sato SB, Ohnishi S (1983) Interaction of a peripheral protein of the erythrocyte-membrane, band-4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles. Eur J Biochem 130:19–25

    CAS  PubMed  Google Scholar 

  • Shen BW, Josephs R, Steck TL (1986) Ultrastructure of the intact skeleton of the human-erythrocyte membrane. J Cell Biol 102:997–1006

    CAS  PubMed  Google Scholar 

  • Sherman IW (1985) Membrane-structure and function of malaria parasites and the infected erythrocyte. Parasitology 91:609–645

    PubMed  Google Scholar 

  • Sikorski AF, Michalak K, Bobrowska M (1987) Interaction of spectrin with phospholipids—quenching of spectrin intrinsic fluorescence by phospholipid suspensions. Biochim Biophys Acta 904:55–60

    CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    CAS  PubMed  Google Scholar 

  • Takakuwa Y, Tchernia G, Rossi M, Benabadji M, Mohandas N (1986) Restoration of normal membrane stability to unstable protein-4.1-deficient erythrocyte-membranes by incorporation of purified protein-4.1. J Clin Invest 78:80–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tse WT, Lux SE (1999) Red blood cell membrane disorders. Br J Haematol 104:2–13

    CAS  PubMed  Google Scholar 

  • Tyler JM, Reinhardt BN, Branton D (1980) Associations of erythrocyte-membrane proteins—binding of purified bands 2.1 and 4.1 to spectrin. J Biol Chem 255:7034–7039

    CAS  PubMed  Google Scholar 

  • Ungewickell E, Gratzer W (1978) Self-association of human spectrin—thermodynamic and kinetic study. Eur J Biochem 88:379–385

    CAS  PubMed  Google Scholar 

  • Ungewickell E, Bennett PM, Calvert R, Ohanian V, Gratzer WB (1979) Invitro formation of a complex between cytoskeletal proteins of the human-erythrocyte. Nature 280:811–814

    CAS  PubMed  Google Scholar 

  • Waller KL, Nunomura W, An XL, Cooke BM, Mohandas N, Coppel RL (2003) Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood 102:1911–1914

    CAS  PubMed  Google Scholar 

  • Weber A, Pennise CR, Babcock GG, Fowler VM (1994) Tropomodulin caps the pointed ends of actin-filaments. J Cell Biol 127:1627–1635

    CAS  PubMed  Google Scholar 

  • Wichterle H, Hanspal M, Palek J, Jarolim P (1996) Combination of two mutant alpha spectrin alleles underlies a severe spherocytic hemolytic anemia. J Clin Invest 98:2300–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham ME, Rug M, Ralph SA, Klonis N, McFadden GI, Tilley L, Cowman AF (2001) Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 20:5636–5649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woods CM, Lazarides E (1986) Spectrin assembly in avian erythroid development is determined by competing reactions of subunit homooligomerization and hetero-oligomerization. Nature 321:85–89

    CAS  PubMed  Google Scholar 

  • Yoshino H, Marchesi VT (1984) Isolation of spectrin subunits and reassociation in vitro—analysis by fluorescence polarization. J Biol Chem 259:4496–4500

    CAS  PubMed  Google Scholar 

  • Yu J, Steck TL (1975) Isolation and characterization of band-3, predominant polypeptide of human erythrocyte-membrane. J Biol Chem 250:9170–9175

    CAS  PubMed  Google Scholar 

  • Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1:233–248

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Avik Basu acknowledges a Senior Research Fellowship from Department of Atomic Energy (DAE), India. Authors also acknowledge MSACR project of DAE for funding and Dr. Sumanta Basu for initial artwork used in illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chakrabarti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Basu, A., Chakrabarti, A. (2015). Defects in Erythrocyte Membrane Skeletal Architecture. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_4

Download citation

Publish with us

Policies and ethics