Skip to main content

Structural Changes of GPI Anchor After Its Attachment to Proteins: Functional Significance

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 842))

Abstract

One hundred and fifty or more of human proteins are anchored to the outer leaflet of plasma membrane by a glycolipid, termed glycosylphosphatidylinositol (GPI). While GPI-anchored proteins (GPI-APs) have wide range of functions, they share two unique characteristics due to the common membrane-anchors. One is that GPI-APs are mainly associated with membrane microdomains so called membrane rafts. Recent reports demonstrated that GPI-APs exist as homodimers and that homodimerization is important for their raft association. Another characteristic of GPI-APs is release from the cell surface after cleavage by GPI-cleaving enzymes. Preassembled GPI is transferred en bloc by GPI transamidase to the C-terminus of proteins having a C-terminal GPI-attachment signal peptide. A unique feature of GPI-anchor is that GPI structure is dynamically modified during transport to the cell surface. Structural remodeling of lipid and glycan moieties in the endoplasmic reticulum is critical for efficient recruitment of GPI-APs into ER-exit site and association with their cargo receptors. Fatty acid remodeling of GPI in the Golgi is important for homodimerization and raft association. These structure–function relationships will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashida H, Hong Y, Murakami Y, Shishioh N, Sugimoto N, Kim YU, Maeda Y, Kinoshita T (2005) Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol Biol Cell 16(3):1439–1448. doi:10.1091/mbc.E04-09-0802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiyonobu T, Inoue N, Morimoto M, Kinoshita T, Murakami Y (2014) Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J Med Genet 51(3):203–207. doi:10.1136/jmedgenet-2013-102156

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Maeda Y, Ra M, Yamaguchi Y, Taguchi R, Kinoshita T (2009) GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell 139(2):352–365. doi:10.1016/j.cell.2009.08.040

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Watanabe R, Jaensch N, Romanova-Michaelides M, Satoh T, Kato M, Riezman H, Yamaguchi Y, Maeda Y, Kinoshita T (2011) Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J Cell Biol 194(1):61–75. doi:10.1083/jcb.201012074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen L, Tawamie H, Murakami Y, Mang Y, ur Rehman S, Buchert R, Schaffer S, Muhammad S, Bak M, Nothen MM, Bennett EP, Maeda Y, Aigner M, Reis A, Kinoshita T, Tommerup N, Baig SM, Abou Jamra R (2013) Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability. Am J Hum Genet 92(4):575–583. doi:10.1016/j.ajhg.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Maeda Y, Watanabe R, Ohishi K, Mishkind M, Riezman H, Kinoshita T (1999) Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J Biol Chem 274:35099–35106

    Article  CAS  Google Scholar 

  • Hong Y, Maeda Y, Watanabe R, Inoue N, Ohishi K, Kinoshita T (2000) Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J Biol Chem 275:20911–20919

    Article  CAS  Google Scholar 

  • Hong Y, Ohishi K, Kang JY, Tanaka S, Inoue N, Nishimura J, Maeda Y, Kinoshita T (2003) Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol Biol Cell 14:1780–1789

    Article  CAS  Google Scholar 

  • Houjou T, Hayakawa J, Watanabe R, Tashima Y, Maeda Y, Kinoshita T, Taguchi R (2007) Changes in molecular species profiles of glycosylphosphatidylinositol-anchor precursors in early stages of biosynthesis. J Lipid Res 48:1599–1606

    Article  CAS  Google Scholar 

  • Howard MF, Murakami Y, Pagnamenta AT, Daumer-Haas C, Fischer B, Hecht J, Keays DA, Knight SJ, Kolsch U, Kruger U, Leiz S, Maeda Y, Mitchell D, Mundlos S, Phillips JA 3rd, Robinson PN, Kini U, Taylor JC, Horn D, Kinoshita T, Krawitz PM (2014) Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation. Am J Hum Genet 94(2):278–287. doi:10.1016/j.ajhg.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue N, Kinoshita T, Orii T, Takeda J (1993) Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy. J Biol Chem 268:6882–6885

    CAS  PubMed  Google Scholar 

  • Kang JY, Hong Y, Ashida H, Shishioh N, Murakami Y, Morita YS, Maeda Y, Kinoshita T (2005) PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem 280(10):9489–9497. doi:10.1074/jbc.M413867200

    Article  CAS  PubMed  Google Scholar 

  • Kanzawa N, Maeda Y, Ogiso H, Murakami Y, Taguchi R, Kinoshita T (2009) Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc Natl Acad Sci U S A 106(42):17711–17716. doi:10.1073/pnas.0904762106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanzawa N, Shimozawa N, Wanders RJ, Ikeda K, Murakami Y, Waterham HR, Mukai S, Fujita M, Maeda Y, Taguchi R, Fujiki Y, Kinoshita T (2012) Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata. J Lipid Res 53(4):653–663. doi:10.1194/jlr.M021204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Fujita M, Maeda Y (2008) Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 144(3):287–294. doi:10.1093/jb/mvn090

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Maeda Y, Fujita M (2013) Transport of glycosylphosphatidylinositol-anchored proteins from the endoplasmic reticulum. Biochim Biophys Acta 1833(11):2473–2478. doi:10.1016/j.bbamcr.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  • Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, Isau M, Fischer A, Dahl A, Kerick M, Hecht J, Kohler S, Jager M, Grunhagen J, de Condor BJ, Doelken S, Brunner HG, Meinecke P, Passarge E, Thompson MD, Cole DE, Horn D, Roscioli T, Mundlos S, Robinson PN (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42(10):827–829. doi:10.1038/ng.653

    Article  CAS  PubMed  Google Scholar 

  • Krawitz PM, Murakami Y, Hecht J, Kruger U, Holder SE, Mortier GR, Delle Chiaie B, De Baere E, Thompson MD, Roscioli T, Kielbasa S, Kinoshita T, Mundlos S, Robinson PN, Horn D (2012) Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am J Hum Genet 91(1):146–151. doi:10.1016/j.ajhg.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krawitz PM, Murakami Y, Riess A, Hietala M, Kruger U, Zhu N, Kinoshita T, Mundlos S, Hecht J, Robinson PN, Horn D (2013) PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am J Hum Genet 92(4):584–589. doi:10.1016/j.ajhg.2013.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda Y, Watanabe R, Harris CL, Hong Y, Ohishi K, Kinoshita K, Kinoshita T (2001) PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J 20:250–261

    Article  CAS  Google Scholar 

  • Maeda Y, Tashima Y, Houjou T, Fujita M, Yoko-o T, Jigami Y, Taguchi R, Kinoshita T (2007) Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell 18(4):1497–1506

    Article  CAS  Google Scholar 

  • Murakami Y, Siripanyapinyo U, Hong Y, Kang JY, Ishihara S, Nakakuma H, Maeda Y, Kinoshita T (2003) PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor. Mol Biol Cell 14(10):4285–4295

    Article  CAS  Google Scholar 

  • Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T (2005) The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell 16(11):5236–5246

    Article  CAS  Google Scholar 

  • Murakami H, Wang Y, Hasuwa H, Maeda Y, Kinoshita T, Murakami Y (2012a) Enhanced response of T lymphocytes from Pgap3 knockout mouse: insight into roles of fatty acid remodeling of GPI anchored proteins. Biochem Biophys Res Commun 417(4):1235–1241. doi:10.1016/j.bbrc.2011.12.116

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T (2012b) Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 287(9):6318–6325. doi:10.1074/jbc.M111.331090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura N, Inoue N, Watanabe R, Takahashi M, Takeda J, Stevens VL, Kinoshita T (1997) Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase. J Biol Chem 272:15834–15840

    Article  CAS  Google Scholar 

  • Ohishi K, Inoue N, Maeda Y, Takeda J, Riezman H, Kinoshita T (2000) Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol Biol Cell 11:1523–1533

    Article  CAS  Google Scholar 

  • Ohishi K, Inoue N, Kinoshita T (2001) PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J 20:4088–4098

    Article  CAS  Google Scholar 

  • Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48(5):993–1011

    Article  CAS  Google Scholar 

  • Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A 91(25):12130–12134

    Article  CAS  Google Scholar 

  • Seong J, Wang Y, Kinoshita T, Maeda Y (2013) Implications of lipid moiety in oligomerization and immunoreactivities of GPI-anchored proteins. J Lipid Res 54(4):1077–1091. doi:10.1194/jlr.M034421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shishioh N, Hong Y, Ohishi K, Ashida H, Maeda Y, Kinoshita T (2005) GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol. J Biol Chem 280(10):9728–9734

    Article  CAS  Google Scholar 

  • Suzuki KG, Kasai RS, Hirosawa KM, Nemoto YL, Ishibashi M, Miwa Y, Fujiwara TK, Kusumi A (2012) Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8(9):774–783. doi:10.1038/nchembio.1028

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Inoue N, Ohishi K, Maeda Y, Nakamura N, Endo Y, Fujita T, Takeda J, Kinoshita T (1996) PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J 15:4254–4261

    Article  CAS  Google Scholar 

  • Tanaka S, Maeda Y, Tashima Y, Kinoshita T (2004) Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 279:14256–14263

    Article  CAS  Google Scholar 

  • Tashima Y, Taguchi R, Murata C, Ashida H, Kinoshita T, Maeda Y (2006) PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell 17(3):1410–1420

    Article  CAS  Google Scholar 

  • Wang Y, Murakami Y, Yasui T, Wakana S, Kikutani H, Kinoshita T, Maeda Y (2013) Significance of glycosylphosphatidylinositol-anchored protein enrichment in lipid rafts for the control of autoimmunity. J Biol Chem 288(35):25490–25499. doi:10.1074/jbc.M113.492611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe R, Ohishi K, Maeda Y, Nakamura N, Kinoshita T (1999) Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem J 339:185–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, Kangawa K, Julius M, Kinoshita T (2000) Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J 19:4402–4411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taroh Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kinoshita, T. (2015). Structural Changes of GPI Anchor After Its Attachment to Proteins: Functional Significance. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_2

Download citation

Publish with us

Policies and ethics