Skip to main content

Effect of Temperature on the Phase Behaviour of Fully Saturated DAPC Lipid Bilayer: A Comparative Molecular Dynamics Simulation Study

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 842))

Abstract

The plasma membrane is made of phospholipid bilayer in which membrane proteins are embedded. The physiochemical properties of the cell membrane are determinant in many important cellular processes. The lipid bilayer has a fluid like consistency and the fundamental structure and dynamic properties are dependent upon temperature. Depending upon temperature lipid bilayer has many phases namely gel phase (Lβ), liquid-crystalline phase (Lα), subgel phase (Lc), and ripple phase (Pβ). We have investigated the structural properties of DAPC lipid bilayer at two different temperatures, one above the phase transition temperature (at 350 K) and another below the phase transition temperature (300 K). We have been able to discriminate the two phases at two different temperatures and determine the phase behavior of DAPC lipid. We have found that change in temperature may have serious consequences for the structural properties of lipid bilayer systems. The reduced area per lipid and the corresponding ordering of the lipid acyl chain lead to phase change of the bilayer. Energy calculation also supports that the system at temperature 300 K is at gel phase. Preliminary studies of dynamic quantities like diffusion coefficient showed that this parameter is also sensitive to temperature and shows lower value at lower temperature indicating ordering at lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Chem Phys 52:24–34

    Google Scholar 

  • Bagatolli LA, Gratton E (2000) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys J 79:434–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basu I, Chattopadhyay A, Mukhopadhyay C (2014) Ion channel stability of Gramicidin a in lipid bilayers: effect of hydrophobic mismatch. Biochim Biophys Acta 1838:328–338

    CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    CAS  Google Scholar 

  • Büldt G, Gally HU, Seelig A, Seelig J, Zaccai G (1978) Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature 271:182–184

    PubMed  Google Scholar 

  • Chiu SW, Jakobsson E, Mashl RJ, Scott HL (2002) Cholesterol-induced modifications in lipid bilayers: a simulation study. Biophys J 83:1842–1853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordomi A, Perez JJ (2007) Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers. J Phys Chem B 111:7052–7063

    CAS  PubMed  Google Scholar 

  • Czub J, Baginski M (2006) Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. Biophys J 90:2368–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    CAS  Google Scholar 

  • Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid In 5:217–223

    CAS  Google Scholar 

  • Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    CAS  Google Scholar 

  • Garcia-Manyes S, Oncins G, Sanz F (2005a) Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophys J 89:1812–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Manyes S, Oncins G, Sanz F (2005b) Effect of temperature on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophys J 89:4261–4274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M, Kusube M, Tamai N, Matsuki H, Kaneshina S (2008) Effect of hydrostatic pressure on the bilayer phase behavior of symmetric and asymmetric phospholipids with the same total chain length. Biochim Biophys Acta 1778:1067–1078

    CAS  PubMed  Google Scholar 

  • Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76:937–945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

  • Jacobson K, Papahadjopoulos D (1975) Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochemistry 1(4):152–161

    Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  • Kelkar DA, Chattopadhyay A (2007) Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers. Biochim Biophys Acta 1768:1103–1113

    CAS  PubMed  Google Scholar 

  • Klauda JB, Kučerka N, Brooks BR, Pastor RW, Nagle JF (2006) Simulation-based methods for interpreting X-ray data from lipid bilayers. Biophys J 90:2796–2807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145

    CAS  PubMed  Google Scholar 

  • Kranenburg M, Smit B (2005) Phase behavior of model lipid bilayers. J Phys Chem B 109:6553–6563

    CAS  PubMed  Google Scholar 

  • Leekumjorn S, Sum AK (2007) Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers. J Phys Chem B 111:6026–6033

    CAS  PubMed  Google Scholar 

  • Lewis RNAH, McElhaney RN (1992) The mesomorphic phase behaviour lipid bilayers. In: Yeagle P (ed) The structure of biological membranes, 2nd edn. CRC, Boca Raton, pp 53–71

    Google Scholar 

  • Mackerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schienkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus MJ (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    CAS  PubMed  Google Scholar 

  • Mackerell AD Jr, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    CAS  PubMed  Google Scholar 

  • Marrink SJ, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem B 98:4155–4168

    CAS  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    CAS  Google Scholar 

  • Mondal S, Mukhopadhyay C (2008) Molecular level investigation of organization in ternary lipid bilayer: a computational approach. Langmuir 24:10298–10305

    CAS  PubMed  Google Scholar 

  • Moore PB, Lopez CF, Klein ML (2001) Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation. Biophys J 81:2484–2494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oldfield E, Chapman D (1972) Dynamics of lipids in membranes: heterogeneity and the role of cholesterol. FEBS Lett 23:285–297

    CAS  PubMed  Google Scholar 

  • Pak JH, Bork VP, Norberg RE, Creer MH, Wolf RA, Gross RW (1987) Disparate molecular dynamics of plasmenylcholine and phosphatidylcholine bilayers. Biochemistry 26:4824–4830

    CAS  PubMed  Google Scholar 

  • Pastor RW, Venable RM, Karplus M (1991) Model for the structure of the lipid bilayer. Proc Natl Acad Sci U S A 88:892–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rittera M, Schmidta S, Jakaba M, Paulmichlb M, Henderson R (2013) Evidence for the formation of symmetric and asymmetric DLPC-DAPC lipid bilayer domains. Cell Physiol Biochem 32:46–52

    Google Scholar 

  • Rocchi C, Bizzarri RA, Cannistraro S (1998) Water dynamical anomalies evidenced by molecular-dynamics simulations at the solvent-protein interface. Phys Rev E 57:3315–3325

    CAS  Google Scholar 

  • Saiz L, Klein ML (2002) Computer simulation studies of model biological membranes. Acc Chem Res 35:482–489

    CAS  PubMed  Google Scholar 

  • Schwyzer R (1991) Peptide–membrane interactions and a new principle in quantitative structure—activity relationships. Biopolymers 31:785–792

    CAS  PubMed  Google Scholar 

  • Seddon JM, Templer RH, Warrender NA, Huang Z, Cevc G, Marsh D (1997) Phosphatidylcholine–fatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal (H II) phases. Biochim Biophys Acta 1327:131–147

    CAS  PubMed  Google Scholar 

  • Seelig A, Seelig J (1974) The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845

    CAS  PubMed  Google Scholar 

  • Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    CAS  PubMed  Google Scholar 

  • Zubrzycki IZ, Xu Y, Madrid M, Tang P (2000) Molecular dynamics simulations of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystalline phase. J Chem Phys 112:3437–3441

    CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Department of Science and Technology, Government of India, [Project number: No. SR/ S1/PC-60/2009] and a fellowship to IB through UGC-NET. We are also thankful to the NANO Project (CONV/002/NANORAC/2008) of the Department of Chemistry, University of Calcutta, Kolkata, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitali Mukhopadhyay .

Editor information

Editors and Affiliations

Ethics declarations

 Data regarding the calculation of number of hydrogen bonds between lipid head group and acyl region separately with water molecules at two temperatures and the rotational reorientation decay for local and bulk water molecules with their fitting parameters are shown.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Basu, I., Mukhopadhyay, C. (2015). Effect of Temperature on the Phase Behaviour of Fully Saturated DAPC Lipid Bilayer: A Comparative Molecular Dynamics Simulation Study. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_17

Download citation

Publish with us

Policies and ethics