Skip to main content

Characterization of Cholesterol Crystalline Domains in Model and Biological Membranes Using X-Ray Diffraction

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 842))

Abstract

In this review, we discuss the use of small-angle X-ray diffraction approaches in studying the formation of cholesterol crystalline domains in membranes derived from model and biological sources. Numerous studies have shown that monomeric cholesterol can self-associate and form immiscible, membrane-restricted domains as a result of increased membrane concentration or systematic oxidation of membrane phospholipids. These domains are observed, in an X-ray diffraction pattern, as reflections describing a unit cell periodicity of 34 Å, which is consistent with cholesterol molecules arranged in a tail-to-tail, bilayer conformation. In vascular smooth muscle cells isolated from animal models of atherosclerosis, plasmalemmal cholesterol domain formation is associated with cellular dysfunction, including the disruption of calcium transport mechanisms. Cholesterol domains are also observed in macrophages and precede the deposition of extracellular cholesterol crystals in the atheroma. We have also shown that cholesterol domains can be produced in model membranes following exposure to oxidative stress and other disease-like conditions such as hyperglycemia. By contrast, cholesterol domains appear to be essential to the normal physiology of certain cell groups such as those of the human ocular lens. Cholesterol domains are a prominent structural feature of the lens fiber cell plasma membrane where they are believed to facilitate lens tissue transparency and interfere with various mechanisms of cataract formation. These contrasting biologic effects highlight the complex role that cholesterol domains play in cell plasma membrane structure-function relationships in both health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bach D, Borochov N, Wachtel E (1998) Phase separation of cholesterol in dimyristoyl phosphatidylserine cholesterol mixtures. Chem Phys Lipids 92:71–77

    CAS  Google Scholar 

  • Bialecki RA, Tulenko TN (1989) Excess membrane cholesterol alters calcium channels in arterial smooth muscle. Am J Physiol 257:C306–C314

    CAS  PubMed  Google Scholar 

  • Blaurock AE (1971) Structure of the nerve myelin membrane: proof of the low-resolution profile. J Mol Biol 56:35–52

    CAS  PubMed  Google Scholar 

  • Blaurock AE (1982) Evidence of bilayer structure and of membrane interactions from X-ray diffraction analysis. Biochim Biophys Acta 650:167–207

    CAS  PubMed  Google Scholar 

  • Blaurock AE, Wilkins MH (1972) Structure of retinal photoreceptor membranes. Nature 236:313–314

    CAS  PubMed  Google Scholar 

  • Bloom M, Thewalt JL (1995) Time and distance scales of membrane domain organization. Mol Membr Biol 12:9–13

    CAS  PubMed  Google Scholar 

  • Bolotina V, Gericke M, Bregestovski P (1991) Kinetic differences between Ca(2+)-dependent K+ channels in smooth muscle cells isolated from normal and atherosclerotic human aorta. Proc Biol Sci 244:51–55

    CAS  PubMed  Google Scholar 

  • Borchman D, Cenedella RJ, Lamba OP (1996) Role of cholesterol in the structural order of lens membrane lipids. Exp Eye Res 62:191–197

    CAS  PubMed  Google Scholar 

  • Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261:1280–1281

    CAS  PubMed  Google Scholar 

  • Broderick R, Bialecki R, Tulenko TN (1989) Cholesterol-induced changes in rabbit arterial smooth muscle sensitivity to adrenergic stimulation. Am J Physiol 257:H170–H178

    CAS  PubMed  Google Scholar 

  • Broekhuyse RM, Soeting WJ (1976) Lipids in tissues of the eye. XV. Essential fatty acids in lens lipids. Exp Eye Res 22:653–657

    CAS  PubMed  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    CAS  PubMed  Google Scholar 

  • Byrdwell WC, Borchman D (1997) Liquid chromatography/mass-spectrometric characterization of sphingomyelin and dihydrosphingomyelin of human lens membranes. Ophthalmic Res 29:191–206

    CAS  PubMed  Google Scholar 

  • Byrdwell WC, Borchman D, Porter RA, Taylor KG, Yappert MC (1994) Separation and characterization of the unknown phospholipid in human lens membranes. Invest Ophthalmol Vis Sci 35:4333–4343

    CAS  PubMed  Google Scholar 

  • Cenedella RJ, Bierkamper GG (1979) Mechanism of cataract production by 3-beta(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride, U18666A: An inhibitor of cholesterol biosynthesis. Exp Eye Res 28:673–688

    CAS  PubMed  Google Scholar 

  • Chandrasekher G, Cenedella RJ (1995) Protein associated with human lens ‘native’ membrane during aging and cataract formation. Exp Eye Res 60:707–717

    CAS  PubMed  Google Scholar 

  • Chang HM, Reitstetter R, Mason RP, Gruener R (1995) Attenuation of channel kinetics and conductance by cholesterol: An interpretation using structural stress as a unifying concept. J Membr Biol 143:51–63

    CAS  PubMed  Google Scholar 

  • Chen M, Mason RP, Tulenko TN (1995) Atherosclerosis alters the composition, structure and function of arterial smooth muscle cell plasma membranes. Biochim Biophys Acta 1272:101–112

    PubMed  Google Scholar 

  • Corless JM (1972) Lamellar structure of bleached and unbleached rod photoreceptor membranes. Nature 237:229–231

    CAS  PubMed  Google Scholar 

  • Craven BM (1976) Crystal structure of cholesterol monohydrate. Nature 260:727–729

    CAS  PubMed  Google Scholar 

  • Dupont Y, Hasselbach W (1973) Structural changes in sarcoplasmic reticulum membrane induced by SH reagents. Nat New Biol 246:41–44

    CAS  PubMed  Google Scholar 

  • Edidin M (1997) Lipid microdomains in cell surface membranes. Curr Opin Struct Biol 7:528–532

    CAS  PubMed  Google Scholar 

  • Engelman DM, Rothman JE (1972) The planar organization of lecithin-cholesterol bilayers. J Biol Chem 247:3694–3697

    CAS  PubMed  Google Scholar 

  • Epand RM, Maekawa S, Yip CM, Epand RF (2001) Protein-induced formation of cholesterol-rich domains. Biochemistry 40:10514–10521

    CAS  PubMed  Google Scholar 

  • Franks NP, Levine YK (1981) Low-angle X-ray diffraction. Mol Biol Biochem Biophys 31:437–487

    CAS  PubMed  Google Scholar 

  • Geng YJ, Phillips JE, Mason RP, Casscells SW (2003) Cholesterol crystallization and macrophage apoptosis: Implication for atherosclerotic plaque instability and rupture. Biochem Pharmacol 66:1485–1492

    CAS  PubMed  Google Scholar 

  • Gleason MM, Medow MS, Tulenko TN (1991) Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells. Circ Res 69:216–227

    CAS  PubMed  Google Scholar 

  • Harris JS, Epps DE, Davio SR, Kezdy FJ (1995) Evidence for transbilayer, tail-to-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes. Biochemistry 34:3851–3857

    CAS  PubMed  Google Scholar 

  • Houslay MD, Stanley KK (1982) Dynamics of biological membranes: influence on synthesis, structure and function. John Wiley, New York

    Google Scholar 

  • Hui SW (1995) Geometry of domains and domain boundaries in monolayers and bilayers. Mol Membr Biol 12:45–50

    CAS  PubMed  Google Scholar 

  • Jacob RF, Mason RP (2005) Lipid peroxidation induces cholesterol domain formation in model membranes. J Biol Chem 280:39380–39387

    CAS  PubMed  Google Scholar 

  • Jacob RF, Cenedella RJ, Mason RP (1999) Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. J Biol Chem 274:31613–31618

    CAS  PubMed  Google Scholar 

  • Jacob RF, Aleo MD, Self-Medlin Y, Doshna CM, Mason RP (2013) 1,2-Naphthoquinone stimulates lipid peroxidation and cholesterol domain formation in model membranes. Invest Ophthalmol Vis Sci 54:7189–7197

    CAS  PubMed  Google Scholar 

  • Janes PW, Ley SC, Magee AI, Kabouridis PS (2000) The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 12:23–34

    CAS  PubMed  Google Scholar 

  • Katz SS, Small DM, Smith FR, Dell RB, Goodman DS (1982) Cholesterol turnover in lipid phases of human atherosclerotic plaque. J Lipid Res 23:733–737

    CAS  PubMed  Google Scholar 

  • Kellner-Weibel G, Yancey PG, Jerome WG, Walser T, Mason RP, Phillips MC, Rothblat GH (1999) Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol 19:1891–1898

    CAS  PubMed  Google Scholar 

  • Kirschner DA, Caspar DL (1972) Comparative diffraction studies on myelin membranes. Ann N Y Acad Sci 195:309–320

    CAS  PubMed  Google Scholar 

  • Knutton S, Finean JB, Coleman R, Limbrick AR (1970) Low-angle X-ray diffraction and electronmicroscope studies of isolated erythrocyte membranes. J Cell Sci 7:357–371

    CAS  PubMed  Google Scholar 

  • Langlet C, Bernard AM, Drevot P, He HT (2000) Membrane rafts and signaling by the multichain immune recognition receptors. Curr Opin Immunol 12:250–255

    CAS  PubMed  Google Scholar 

  • Lau YT (1994) Cholesterol enrichment inhibits Na+/K+ pump in endothelial cells. Atherosclerosis 110:251–257

    CAS  PubMed  Google Scholar 

  • Leonard A, Dufourc EJ (1991) Interactions of cholesterol with the membrane lipid matrix: a solid state NMR approach. Biochimie 73:1295–1302

    CAS  PubMed  Google Scholar 

  • Li LK, So L, Spector A (1985) Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J Lipid Res 26:600–609

    CAS  PubMed  Google Scholar 

  • Li LK, So L, Spector A (1987) Age-dependent changes in the distribution and concentration of human lens cholesterol and phospholipids. Biochim Biophys Acta 917:112–120

    CAS  PubMed  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    CAS  PubMed  Google Scholar 

  • Liscum L, Underwood KW (1995) Intracellular cholesterol transport and compartmentation. J Biol Chem 270:15443–15446

    CAS  PubMed  Google Scholar 

  • Maekawa S, Sato C, Kitajima K, Funatsu N, Kumanogoh H, Sokawa Y (1999) Cholesterol-dependent localization of NAP-22 on a neuronal membrane microdomain (raft). J Biol Chem 274:21369–21374

    CAS  PubMed  Google Scholar 

  • Mason RP, Walter MF, Day CA, Jacob RF (2006) Active metabolite of atorvastatin inhibits membrane cholesterol domain formation by an antioxidant mechanism. J Biol Chem 281:9337–9345

    CAS  PubMed  Google Scholar 

  • McIntosh TJ (1978) The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta 513:43–58

    CAS  PubMed  Google Scholar 

  • Moody MF (1963) X-ray diffraction pattern of nerve myelin: a method for determining the phases. Science 142:1173–1174

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Chattopadhyay A (1996) Membrane organization at low cholesterol concentrations: a study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry 35:1311–1322

    CAS  PubMed  Google Scholar 

  • Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA (1999) Glycosphingolipids are not essential for formation of detergent- resistant membrane rafts in melanoma cells. Methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J Biol Chem 274:34459–34466

    CAS  PubMed  Google Scholar 

  • Phillips MC, Johnson WC, Rothblat GH (1997) Mechanism and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 906:223–276

    Google Scholar 

  • Phillips JE, Geng YJ, Mason RP (2001) 7-Ketocholesterol forms crystalline domains in model membranes and murine aortic smooth muscle cells. Atherosclerosis 159:125–135

    CAS  PubMed  Google Scholar 

  • Rafferty NS (1985) Lens morphology. In: Maisel H (ed) The Ocular Lens. Marcel Dekker, New York, pp 1–60

    Google Scholar 

  • Rice PA, McConnell HM (1989) Critical shape transitions of monolayer lipid domains. Proc Natl Acad Sci U S A 86:6445–6448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruocco MJ, Shipley GG (1984) Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes. Biophys J 46:695–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder F, Wood WG (1995) Lateral lipid domains and membrane function. In: Sperelakis N (ed) Cell Physiology Source Book. Academic, New York, pp 36–44

    Google Scholar 

  • Schroeder F, Jefferson JR, Kier AB, Knittel J, Scallen TJ, Wood WG, Hapala I (1991) Membrane cholesterol dynamics: cholesterol domains and kinetic pools. Proc Soc Exp Biol Med 196:235–252

    CAS  PubMed  Google Scholar 

  • Schroeder F, Woodford JK, Kavecansky J, Wood WG, Joiner C (1995) Cholesterol domains in biological membranes. Mol Membr Biol 12:113–119

    CAS  PubMed  Google Scholar 

  • Self-Medlin Y, Byun J, Jacob RF, Mizuno Y, Mason RP (2009) Glucose promotes membrane cholesterol crystalline domain formation by lipid peroxidation. Biochim Biophys Acta 1788:1398–1403

    CAS  PubMed  Google Scholar 

  • Shinitzky M, Inbar M (1976) Microviscosity parameters and protein mobility in biological membranes. Biochim Biophys Acta 433:133–149

    CAS  PubMed  Google Scholar 

  • Shrivastava S, Pucadyil TJ, Paila YD, Ganguly S, Chattopadhyay A (2010) Chronic cholesterol depletion using statin impairs the function and dynamics of human serotonin(1A) receptors. Biochemistry 49:5426–5435

    CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726

    CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    CAS  PubMed  Google Scholar 

  • Slotte JP (1995a) Lateral domain formation in mixed monolayers containing cholesterol and dipalmitoylphosphatidylcholine or N-palmitoylsphingomyelin. Biochim Biophys Acta 1235:419–427

    PubMed  Google Scholar 

  • Slotte PJ (1995b) Effect of sterol structure on molecular interactions and lateral domain formation in monolayers containing dipalmitoyl phosphatidylcholine. Biochim Biophys Acta 1237:127–134

    PubMed  Google Scholar 

  • Small DM (1988) Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arterioscler Thromb Vasc Biol 8:103–129

    CAS  Google Scholar 

  • Tocanne JF (1992) Detection of lipid domains in biological membranes. Comments Mol Cell Biophys 8:53–72

    Google Scholar 

  • Tulenko TN, Chen M, Mason PE, Mason RP (1998) Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J Lipid Res 39:947–956

    CAS  PubMed  Google Scholar 

  • Worthington CR, Liu SC (1973) Structure of sarcoplasmic reticulum membranes at low resolution (17Å). Arch Biochem Biophys 157:573–579

    CAS  PubMed  Google Scholar 

  • Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822:267–287

    CAS  PubMed  Google Scholar 

  • Yeagle PL, Young J, Rice D (1988) Effects of cholesterol on (Na+, K+)-ATPase ATP hydrolyzing activity in bovine kidney. Biochemistry 27:6449–6452

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Preston Mason Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mason, R.P., Jacob, R.F. (2015). Characterization of Cholesterol Crystalline Domains in Model and Biological Membranes Using X-Ray Diffraction. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_15

Download citation

Publish with us

Policies and ethics