Skip to main content

A Signal with a Difference: The Role of GPI Anchor Signal Sequence in Dictating Conformation and Function of the Als5 Adhesin in Candida albicans

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Abstract

The C-terminal GPI-attachment signal sequences (SSs) of proteins that receive GPI anchors need to be chopped off by the GPI-transamidase and replaced by preformed GPI precursor. The proteins and the anchors thereafter undergo several additional modifications before they are transported to their final destinations at the cell surface. Mutations in the SS that do not necessarily influence anchor attachment appear to still dictate the final fates of the proteins. How and why this happens is unclear though a couple of different hypotheses exist. Using the Als5 adhesin of C. albicans we propose another probable mechanism by which SSs could influence the destiny of the GPI anchored proteins. We had previously shown that the last 20-residues of SS, if left intact on the 1347-residue long protein, could interact with the amyloidogenic domain of Als5 and cause the otherwise natively unfolded Als5 to adopt a predominantly alpha helical conformation, reducing adhesion and preventing it from forming β-aggregates as is expected of the functional Als5. We had proposed that this was due to an interaction between the SS and the amyloidogenic domain on Als5. In this paper, we develop this theme further. We demonstrate that introducing mutations in the SS of Als5 appear to reduce the interactions between these domains and result in variants that resemble the mature protein in functionality. We propose that the actual conformations of the proprotein affects its interacting partners, thereby also influencing how the GPI anchored protein associates with ER exit sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MF, Yadav B, Kumar P et al (2012) The GPI anchor signal sequence dictates the folding and functionality of the Als5 adhesin from Candida albicans. PLoS One 7:e35305. doi:10.1371/journal.pone.0035305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Hall J, Hazlewood GP et al (1996) A protein targeting signal that functions in polarized epithelial cells in vivo. Biochem J 315(Pt 3):857–862

    Article  CAS  Google Scholar 

  • Ashok A, Hegde RS (2008) Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation. Mol Biol Cell 19:3463–3476. doi:10.1091/mbc.E08-01-0087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger J, Howard AD, Brink L et al (1988) COOH-terminal requirements for the correct processing of a phosphatidylinositol-glycan anchored membrane protein. J Biol Chem 263:10016–10021

    CAS  PubMed  Google Scholar 

  • Böhme U, Cross GAM (2002) Mutational analysis of the variant surface glycoprotein GPI-anchor signal sequence in Trypanosoma brucei. J Cell Sci 115:805–816

    PubMed  Google Scholar 

  • Caras IW (1991) An internally positioned signal can direct attachment of a glycophospholipid membrane anchor. J Cell Biol 113:77–85

    Article  CAS  Google Scholar 

  • Caras IW, Weddell GN (1989) Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment. Science 243:1196–1198

    Article  CAS  Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582

    Article  CAS  Google Scholar 

  • Dalley JA, Bulleid NJ (2003) How does the translocon differentiate between hydrophobic sequences that form part of either a GPI (glycosylphosphatidylinositol)-anchor signal or a stop transfer sequence? Biochem Soc Trans 31:1257–1259

    Article  CAS  Google Scholar 

  • Eisenhaber B, Bork P, Eisenhaber F (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng 11:1155–1161

    Article  CAS  Google Scholar 

  • Eisenhaber B, Bork P, Eisenhaber F (1999) Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 292:741–758. doi:10.1006/jmbi.1999.3069

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser N, Mäser P (2005) Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21:1846–1852. doi:10.1093/bioinformatics/bti299

    Article  CAS  PubMed  Google Scholar 

  • Frieman MB, Cormack BP (2004) Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150:3105–3114. doi:10.1099/mic.0.27420-0

    Article  CAS  PubMed  Google Scholar 

  • Frieman MB, Cormack BP (2003) The omega-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol Microbiol 50:883–896

    Article  CAS  Google Scholar 

  • Galian C, Björkholm P, Bulleid N, von Heijne G (2012) Efficient glycosylphosphatidylinositol (GPI) modification of membrane proteins requires a C-terminal anchoring signal of marginal hydrophobicity. J Biol Chem 287:16399–16409. doi:10.1074/jbc.M112.350009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Tarleton RL, Mensa-Wilmot K (1997) Proteins with glycosylphosphatidylinositol (GPI) signal sequences have divergent fates during a GPI deficiency. GPIs are essential for nuclear division in Trypanosoma cruzi. J Biol Chem 272:12482–12491

    Article  CAS  Google Scholar 

  • Grimme SJ, Colussi PA, Taron CH, Orlean P (2004) Deficiencies in the essential Smp3 mannosyltransferase block glycosylphosphatidylinositol assembly and lead to defects in growth and cell wall biogenesis in Candida albicans. Microbiology 150:3115–3128. doi:10.1099/mic.0.27254-0

    Article  CAS  PubMed  Google Scholar 

  • Guizzunti G, Zurzolo C (2014) The fate of PrP GPI-anchor signal peptide is modulated by P238S pathogenic mutation. Traffic 15:78–93. doi:10.1111/tra.12126

    Article  CAS  PubMed  Google Scholar 

  • Hamada K, Terashima H, Arisawa M et al (1999) Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 181:3886–3889

    Article  CAS  Google Scholar 

  • Hessa T, Meindl-Beinker NM, Bernsel A et al (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030. doi:10.1038/nature06387

    Article  CAS  PubMed  Google Scholar 

  • Hizume M, Kobayashi A, Mizusawa H, Kitamoto T (2010) Amino acid conditions near the GPI anchor attachment site of prion protein for the conversion and the GPI anchoring. Biochem Biophys Res Commun 391:1681–1686. doi:10.1016/j.bbrc.2009.12.128

    Article  CAS  PubMed  Google Scholar 

  • Hoque MZ, Kitamoto T, Furukawa H et al (1996) Mutation in the prion protein gene at codon 232 in Japanese patients with Creutzfeldt-Jakob disease: a clinicopathological, immunohistochemical and transmission study. Acta Neuropathol 92:441–446

    Article  CAS  Google Scholar 

  • Hoyer LL, Hecht JE (2001) The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 18:49–60

    Article  CAS  Google Scholar 

  • Kiachopoulos S, Bracher A, Winklhofer KF, Tatzelt J (2005) Pathogenic mutations located in the hydrophobic core of the prion protein interfere with folding and attachment of the glycosylphosphatidylinositol anchor. J Biol Chem 280:9320–9329. doi:10.1074/jbc.M412525200

    Article  CAS  PubMed  Google Scholar 

  • Klotz SA, Gaur NK, Lake DF, Chan V, Rauceo J, et al. (2004) Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect. Immun. 72, 2029–2034.

    Article  CAS  Google Scholar 

  • Leidich SD, Drapp DA, Orlean P (1994) A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J Biol Chem 269:10193–10196

    CAS  PubMed  Google Scholar 

  • Martinez-Lopez R, Monteoliva L, Diez-Orejas R et al (2004) The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans. Microbiology 150:3341–3354. doi:10.1099/mic.0.27320-0

    Article  CAS  PubMed  Google Scholar 

  • McConville MJ, Ferguson MA (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 294(Pt 2):305–324

    Article  CAS  Google Scholar 

  • Miyagawa-Yamaguchi A, Kotani N, Honke K (2014) Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. PLoS One 9:e93054. doi:10.1371/journal.pone.0093054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson TB, Stanners CP (2007) Identification of a novel functional specificity signal within the GPI anchor signal sequence of carcinoembryonic antigen. J Cell Biol 177:211–218. doi:10.1083/jcb.200701158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisbet RM, Harrison CF, Lawson VA et al (2010) Residues surrounding the glycosylphosphatidylinositol anchor attachment site of PrP modulate prion infection: insight from the resistance of rabbits to prion disease. J Virol 84:6678–6686. doi:10.1128/JVI.02709-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang H, Chen X, Lü Y et al (2013) One single basic amino acid at the ω-1 or ω-2 site is a signal that retains glycosylphosphatidylinositol-anchored protein in the plasma membrane of Aspergillus fumigatus. Eukaryot Cell 12:889–899. doi:10.1128/EC.00351-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paladino S, Lebreton S, Tivodar S et al (2008) Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. J Cell Sci 121:4001–4007. doi:10.1242/jcs.036038

    Article  CAS  PubMed  Google Scholar 

  • Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry (Mosc) 47:6991–7000. doi:10.1021/bi8006324

    Article  CAS  Google Scholar 

  • Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771:405–420. doi:10.1016/j.bbalip.2006.05.015

    Article  CAS  PubMed  Google Scholar 

  • Poggiolini I, Saverioni D, Parchi P (2013) Prion protein misfolding, strains, and neurotoxicity: an update from studies on mammalian prions. Int J Cell Biol 2013:910314. doi:10.1155/2013/910314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsook CB, Tan C, Garcia MC et al (2010) Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell 9:393–404. doi:10.1128/EC.00068-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauceo JM, De Armond R, Otoo H, Kahn PC, Klotz SA, et al. (2006) Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryotic Cell 5, 1664–1673

    Article  CAS  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    Article  CAS  Google Scholar 

  • Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4:461–469

    Article  CAS  Google Scholar 

  • Wang J, Maziarz K, Ratnam M (1999) Recognition of the carboxyl-terminal signal for GPI modification requires translocation of its hydrophobic domain across the ER membrane. J Mol Biol 286:1303–1310. doi:10.1006/jmbi.1999.2584

    Article  CAS  PubMed  Google Scholar 

  • Windl O, Giese A, Schulz-Schaeffer W et al (1999) Molecular genetics of human prion diseases in Germany. Hum Genet 105:244–252

    Article  CAS  Google Scholar 

  • Yadav B, Bhatnagar S, Ahmad MF et al (2014) First step of glycosylphosphatidylinositol (GPI) biosynthesis cross-talks with ergosterol biosynthesis and Ras signaling in Candida albicans. J Biol Chem 289:3365–3382. doi:10.1074/jbc.M113.528802

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work in SSK’s lab is supported in parts by funds from DST-PURSE grant to Jawaharlal Nehru University as well as UGC-Resource network grant to the School of Life Sciences. PGM receives a Senior Research Fellowship from UGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Sudha Komath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ahmad, M.F., Mann, P.G., Komath, S.S. (2015). A Signal with a Difference: The Role of GPI Anchor Signal Sequence in Dictating Conformation and Function of the Als5 Adhesin in Candida albicans. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_10

Download citation

Publish with us

Policies and ethics