Skip to main content

Anti-microbiological and Anti-infective Activities of Silver

  • Chapter
  • First Online:
Silver Nanoparticle Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Silver nanoparticles are the latest version of silver preparations that have been revived and tested as anti-microbials, particularly as an alternative to antibiotics since the emergence of drug resistant bacteria. Silver nanoparticles share commonalities with other silver preparations and other metallic nanoparticles, but also several significant differences in their interactions with microbes. Their mechanism of action is not completely understood but their potential utility has led to the high level of research activity to determine the safety and efficacy of these nanoparticles for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, J.W.: History of the medical use of silver. Surg. Infect. 10(3), 289–292 (2009)

    Article  Google Scholar 

  2. Roe, A.L., Collosol argentum and its ophthalmic uses. British Med. J. 1(2820), 104 (1915)

    Google Scholar 

  3. Tenover, F.C., Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119(6 Suppl 1), S3–S10; discussion S62–S70 (2006)

    Google Scholar 

  4. Rai, M.K., et al.: Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112(5), 841–852 (2012)

    Article  Google Scholar 

  5. Chernousova, S., Epple, M.: Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. 52(6), 1636–1653 (2012)

    Article  Google Scholar 

  6. Hardes, J., et al.: Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28(18), 2869–2875 (2007)

    Article  Google Scholar 

  7. Butany, J., et al.: Prosthetic heart valves with silver-coated sewing cuff fabric: early morphological features in two patients. Can. J. Cardiol. 18(7), 733–738 (2002)

    Google Scholar 

  8. Butany, J., et al.: Pathologic analysis of 19 heart valves with silver-coated sewing rings. J. Card. Surg. 21(6), 530–538 (2006)

    Article  Google Scholar 

  9. Chopra, I.: The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J. Antimicrob. Chem. 59(4), 587–590 (2007)

    Article  Google Scholar 

  10. Fox Jr, C.L.: Silver sulfadiazine–a new topical therapy for pseudomonas in burns. Therapy of pseudomonas infection in burns. Arch. Surg. 96(2), 184–188 (1968)

    Article  Google Scholar 

  11. Liau, S.Y., et al.: Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25(4), 279–283 (1997)

    Article  Google Scholar 

  12. Bragg, P.D., Rainnie, D.J.: The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol. 20(6), 883–889 (1974)

    Article  Google Scholar 

  13. Schreurs, W.J., Rosenberg, H.: Effect of silver ions on transport and retention of phosphate by Escherichia coli. J. Bacteriol. 152(1), 7–13 (1982)

    Google Scholar 

  14. Sondi, I., Salopek-Sondi, B: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Coll. Interface. Sci 275(1), 177–182 (2004)

    Google Scholar 

  15. Alarcon, E.I., et al.: The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19), 4947–4956 (2012)

    Article  Google Scholar 

  16. Hajipour, M.J., et al.: Antibacterial properties of nanoparticles. Trends Biotech. 30(10), 499–511 (2012)

    Article  Google Scholar 

  17. Cho, H., Uehara, T., Bernhardt, T.G.: Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159(6), 1300–1311 (2014)

    Article  Google Scholar 

  18. Feng, Q.L., et al.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52(4), 662–668 (2000)

    Article  Google Scholar 

  19. Batarseh, K.I.: Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J. Antimicrob. Chemother. 54(2), 546–548 (2004)

    Article  Google Scholar 

  20. Feng, Q.L., et al.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52(4), 662–668 (2000)

    Article  Google Scholar 

  21. McNeilage, L.J., Whittingham, S.: Use of the bio-rad silver stain to identify gel purified RNA components of small nuclear ribonucleoprotein antigens. J. Immunol. Met. 66(2), 253–260 (1984)

    Article  Google Scholar 

  22. Modak, S.M., Fox Jr, C.L.: Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem. Pharmacol. 22(19), 2391–2404 (1973)

    Article  Google Scholar 

  23. Bovenkamp, G.L., et al.: X-ray absorption near-edge structure (XANES) spectroscopy study of the interaction of silver ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. Appl. Environ. Microbiol. 79(20), 6385–6390 (2013)

    Article  Google Scholar 

  24. Stillman, M.J., et al.: Spectroscopic studies of copper, silver and gold-metallothioneins. Met.-Based Drugs 1(5–6), 375–394 (1994)

    Article  Google Scholar 

  25. Dibrov, P., et al.: Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob. Agents Chemother. 46(8), 2668–2670 (2002)

    Article  Google Scholar 

  26. Chappell, J.B., Greville, G.D.: Effect of silver ions on mitochondrial adenosine triphosphatase. Nature 174(4437), 930–931 (1954)

    Article  Google Scholar 

  27. Li, W.-R., et al.: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotech. 85(4), 1115–1122 (2010)

    Article  Google Scholar 

  28. Lok, C.N., et al.: Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5(4), 916–924 (2006)

    Article  Google Scholar 

  29. Lok, C.N., et al.: Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12(4), 527–534 (2007)

    Article  Google Scholar 

  30. Lok, C.N., et al.: Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12(4), 527–534 (2007)

    Article  Google Scholar 

  31. Kim, J.S., et al.: Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007)

    Article  Google Scholar 

  32. Choi, O., et al.: The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42(12), 3066–3074 (2008)

    Article  Google Scholar 

  33. Ruparelia, J.P., et al.: Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4(3), 707–716 (2008)

    Article  Google Scholar 

  34. Navarro, E., et al.: Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 42(23), 8959–8964 (2008)

    Article  Google Scholar 

  35. Morones, J.R., et al.: The bactericidal effect of silver nanoparticles. Nanotechnology 16(10), 2346–2353 (2005)

    Article  Google Scholar 

  36. Baker, C., et al.: Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5(2), 244–249 (2005)

    Article  Google Scholar 

  37. Pal, S., Tak, Y.K., Song, J.M.: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)

    Article  Google Scholar 

  38. Li, P., et al.: Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16(9), 1912 (2005)

    Article  Google Scholar 

  39. Shahverdi, A.R., et al.: Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 3(2), 168–171 (2007)

    Article  Google Scholar 

  40. Musser, J.M.: Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev. 8(4), 496–514 (1995)

    Google Scholar 

  41. Chopra, I., Roberts, M.: Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65(2), 232–260 (2001)

    Article  Google Scholar 

  42. McHugh, G.L., et al.: Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 1(7901), 235–240 (1975)

    Article  Google Scholar 

  43. Gupta, A., et al.: Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147(Pt 12), 3393–3402 (2001)

    Google Scholar 

  44. Silver, S.: Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27(2–3), 341–353 (2003)

    Article  Google Scholar 

  45. Bridges, K., et al.: Gentamicin- and silver-resistant pseudomonas in a burns unit. Br. Med. J. 1(6161), 446–449 (1979)

    Article  Google Scholar 

  46. Deshpande, L., Chopade, B.: Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals 7(1), 49–56 (1994)

    Article  Google Scholar 

  47. Chopra, I.: The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J. Antimicrob. Chemother. 59(4), 587–590 (2007)

    Article  Google Scholar 

  48. Zhang, C., Liang, Z., Hu, Z.: Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Res. 50, 350–358 (2014)

    Article  Google Scholar 

  49. Hall-Stoodley, L., Costerton, J.W., Stoodley, P.: Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Micro. 2(2), 95–108 (2004)

    Article  Google Scholar 

  50. Romling, U., et al.: Microbial biofilm formation: a need to act. J. Intern. Med. 276(2), 98–110 (2014)

    Article  Google Scholar 

  51. Palanisamy, N.K., et al.: Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J. Nanobiotech. 12, 2 (2014)

    Article  Google Scholar 

  52. Mah, T.F.: Biofilm-specific antibiotic resistance. Future Microbiol. 7(9), 1061–1072 (2012)

    Article  Google Scholar 

  53. Hoiby, N., et al.: Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35(4), 322–332 (2010)

    Article  Google Scholar 

  54. Martinez-Gutierrez, F., et al.: Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29(6), 651–660 (2013)

    Article  Google Scholar 

  55. Park, H.-J., et al.: Biofilm-inactivating activity of silver nanoparticles: a comparison with silver ions. J. Ind. Eng. Chem. 19(2), 614–619 (2013)

    Article  Google Scholar 

  56. Kalishwaralal, K., et al.: Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B 79(2), 340–344 (2010)

    Article  Google Scholar 

  57. Mohanty, S., et al.: An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 8(6), 916–924 (2012)

    Article  Google Scholar 

  58. Radzig, M.A., et al.: Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B 102, 300–306 (2013)

    Article  Google Scholar 

  59. Babapour, A., et al.: Low-temperature sol-gel-derived nanosilver-embedded silane coating as biofilm inhibitor. Nanotechnology 22(15), 155602 (2011)

    Article  Google Scholar 

  60. Paladini, F., et al.: Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion. J. Mater. Sci. Mater. Med. 23(8), 1983–1990 (2012)

    Article  Google Scholar 

  61. Vignoni, M., et al.: LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale 6(11), 5718–5725 (2014)

    Article  Google Scholar 

  62. Romling, U., Balsalobre, C.: Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 272(6), 541–561 (2012)

    Article  Google Scholar 

  63. Lima, E., et al.: Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem. Cent. J. 7(1), 11 (2013)

    Article  Google Scholar 

  64. Bindhu, M.R., Umadevi, M.: Antibacterial activities of green synthesized gold nanoparticles. Mat. Lett. 120, 122–125 (2014)

    Article  Google Scholar 

  65. Azam, A., et al.: Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012)

    Article  Google Scholar 

  66. Bouts, B.A.: Images in clinical medicine. Argyria. N. Engl. J. Med. 340(20), 1554 (1999)

    Article  Google Scholar 

  67. Hanada, K., et al.: Silver in sugar particles and systemic argyria. Lancet 351(9107), 960 (1998)

    Article  Google Scholar 

  68. Legat, F.J., et al.: Argyria after short-contact acupuncture. Lancet 352(9123), 241 (1998)

    Article  Google Scholar 

  69. Poon, V.K., Burd, A.: In vitro cytotoxity of silver: implication for clinical wound care. Burns 30(2), 140–147 (2004)

    Article  Google Scholar 

  70. Burd, A., et al.: A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Rep. Reg. 15(1), 94–104 (2007)

    Article  Google Scholar 

  71. Braydich-Stolle, L., et al.: In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88(2), 412–419 (2005)

    Article  Google Scholar 

  72. Liu, X., et al.: Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. Chem. Med. Chem. 5(3), 468–475 (2010)

    Article  Google Scholar 

  73. Zhang, S., et al.: Silver nanoparticle-coated suture effectively reduces inflammation and improves mechanical strength at intestinal anastomosis in mice. J. Pedia. Surg. 49(4), 606–613 (2014)

    Article  Google Scholar 

  74. Wong, K.K.Y., et al.: Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem. Med. Chem. 4(7), 1129–1135 (2009)

    Article  Google Scholar 

  75. Khandelwal, N., et al.: Application of silver nanoparticles in viral inhibition: a new hope for antivirals. Digest J. Nanomater. Biostruct. 9(1), 175–186 (2014)

    Google Scholar 

Download references

Acknowledgments

Research in TF Mah’s laboratory has been supported by grants from Cystic Fibrosis Canada and the Natural Sciences and Engineering Research Council of Canada (NSERC). EIA thanks the University of Ottawa Heart Institute for the financial and scientific support (UOHI grant#1255). MG acknowledges funding from the Swedish Research Council and AFA Försäkring for research conducted within her laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio I. Alarcon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griffith, M., Udekwu, K.I., Gkotzis, S., Mah, TF., Alarcon, E.I. (2015). Anti-microbiological and Anti-infective Activities of Silver. In: Alarcon, E., Griffith, M., Udekwu, K. (eds) Silver Nanoparticle Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-11262-6_6

Download citation

Publish with us

Policies and ethics