Skip to main content

Silver Nanoparticles: From Bulk Material to Colloidal Nanoparticles

  • Chapter
  • First Online:
Silver Nanoparticle Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Metals exhibit interesting optical properties, especially in comparison to molecules and semiconductors. In contrast to molecules and semiconductors, metals support plasmons, which are a collective oscillation of many electrons in the material. When the size of these metal nanoparticles is small (<100 nm), these plasmon absorbances occur in the visible region of the electromagnetic spectrum, giving rise to colored solutions. One of the unique characteristics of plasmon excitation is the conversion of light energy into extreme and highly localized heating at the surface of these particles. Excitation of plasmons by both pulsed (i.e. lasers) and continuous (i.e. sunlight) excitation and the effects of plasmon excitation on the surrounding material are discussed in this chapter. The potential for using these materials in photothermal therapy for ailments such as cancer is also discussed in terms of the unique properties of these metals, related to plasmon excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goesmann, H., Feldmann, C.: Nanoparticulate functional materials. Angew. Chem. Int. Ed. 49, 2–36 (2010)

    Article  Google Scholar 

  2. Alexander, J.W.: History of the medical use of silver. Surg. Infec. 10(3), 289–292 (2009)

    Article  Google Scholar 

  3. Alarcon, et al.: The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19), 4947–4956 (2012)

    Google Scholar 

  4. Rosi, N.L., Mirkin, C.A.: Nanostructures in Biodiagnostics. Chem. Rev. 105(4), 1547–1562 (2005)

    Article  Google Scholar 

  5. Stockman, M.I.: The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010)

    Article  Google Scholar 

  6. Lewinski, N., Colvin, V., Drezek, R.: Cytotoxicity of nanoparticles. Small 4(1), 26–49 (2008)

    Article  Google Scholar 

  7. Turro, N.J., Ramamurthy,V., Scaiano, J.C.: Modern molecular photochemistry of organic molecules, University Science Books, 1100 (2009)

    Google Scholar 

  8. Hartland, G.V.: Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111(6), 3858–3887 (2011)

    Article  Google Scholar 

  9. Kelly, K.L., et al.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  10. Stamplecoskie, K.S., Scaiano, J.C.: Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc. 132(6), 1825–1827 (2010)

    Article  Google Scholar 

  11. Henglein, A.: Physichochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. US 97(21), 5457–5471 (1993)

    Google Scholar 

  12. Link, S., Wang, Z.L., El-Sayed, M.A.: Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103(18), 3529–3533 (1999)

    Article  Google Scholar 

  13. Anger, P., Bharadwaj, P., Novotny, L.: Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96(11), 113002 (2006)

    Article  Google Scholar 

  14. Baffou, G., Quidant, R.: Nanoplasmonics for chemistry. Chem. Soc. Rev. 43(11), 3898 (2014)

    Article  Google Scholar 

  15. Baffou, G., Rigneault, H.: Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B 84(3), 13 (2011)

    Article  Google Scholar 

  16. Mohamed, M.B., et al.: Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chem. Phys. Lett. 343(1–2), 55–63 (2001)

    Article  Google Scholar 

  17. El-Sayed, I., Huang, X., El-Sayed, M.: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239(1), 129–135 (2006)

    Article  Google Scholar 

  18. Alarcon, et al.: Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J. Nanopart. Res 15 1–14 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Stamplecoskie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stamplecoskie, K. (2015). Silver Nanoparticles: From Bulk Material to Colloidal Nanoparticles. In: Alarcon, E., Griffith, M., Udekwu, K. (eds) Silver Nanoparticle Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-11262-6_1

Download citation

Publish with us

Policies and ethics