Skip to main content

Weak and Strong Correlations in Fe Superconductors

  • Chapter
  • First Online:
Iron-Based Superconductivity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 211))

Abstract

In this chapter I will discuss the strength of electronic correlations in the normal phase of Fe-superconductors. It will be shown that the agreement between a wealth of experiments and DFT+DMFT or similar approaches supports a scenario in which strongly correlated and weakly correlated electrons coexist in the conduction bands of these materials. I will then reverse-engineer the realistic calculations and justify this scenario in terms of simpler behaviors easily interpreted through model results. All pieces come together to show that Hund’s coupling, besides being responsible for the electronic correlations even in the absence of a strong Coulomb repulsion is also the origin of a subtle emergent behavior: orbital decoupling. Indeed Hund’s exchange decouples the charge excitations in the different Iron orbitals involved in the conduction bands thus causing an independent tuning of the degree of electronic correlation in each one of them. The latter becomes sensitive almost only to the offset of the orbital population from half-filling, where a Mott insulating state is invariably realized at these interaction strengths. Depending on the difference in orbital population a different “Mottness” affects each orbital, and thus reflects in the conduction bands and in the Fermi surfaces depending on the orbital content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Two conventions are typically used for the unit cell and the consequent Brillouin zone. Depending on the convention used the electron pockets are centered either on the corner (e.g. (π, π)), or on the side (e.g. (π, 0)) of the Brillouin zone. The present discussion is independent of the convention used.

  2. 2.

    For the Mott transition, an intuitive connection between the screening/unscreening process and the Hubbard criterion is made by the self-consistent nature of the effective DMFT bath. When the low-energy coherence is too low, it is convenient for the system to lower the energy of the low-lying filled states by opening a gap at the Fermi energy (ρ = 0) and form a Mott insulator, which is self-consistent because when ρ = 0, T K  = 0 (for a discussion see e.g. [51]).

  3. 3.

    Indeed it is found numerically that the values of U c at large J scale well with Δ at [32]. It can be shown (at least in specific cases) that at large J the effective width of the Hubbard bands \(\tilde{W}\) tends to a constant (the single-band value \(\tilde{W} \simeq W\) for the half-filled case—de’ Medici and Capone, unpublished) owing to the quenching of orbital fluctuations. At small J instead orbital fluctuations are still active and their reduction with J (and the consequent reduction of \(\tilde{W}(J)\)) dominates over the tuning of Δ at (J). Thus while in the half-filled case the two effects add up, causing an even faster reduction of U c , in the “Janus” case (see the main text) they work against one-another (not surprisingly, since the reduction of \(\tilde{W}\) is related to the loss of kinetic energy due to the reduction of the T K ) causing an initial decrease of U c before a strong increase.

  4. 4.

    In the limiting case of a shell populated by only one electron or one hole per site however, the low-energy effect of Hund’s coupling is absent, so that the correlation strength is simply reduced following the enhancement of U c (left panel in Fig. 11.7).

  5. 5.

    Indeed following the c-RPA estimates reported in Fig. 11.5 one finds \(J/U \simeq 0.12 - 0.16\). In order to properly implement this value in the semi-quantitative slave-spin mean-field approximation (SSMF), they have to be slightly enhanced. In practice in order to match the U c ’s for the Mott transitions for JU ≃ 0. 15 in DMFT with Kanamori interaction corresponds to JU ≳ 0. 2 in SSMF with density–density interaction (for U c in a five band model in DMFT see [62]).

  6. 6.

    Here I refer to an ideal electrostatic doping, i.e., to a simple shift of the overall filling. Indeed the actual chemical doping is effectuated through atomic substitution that modifies also the bare bandstructure. This is also true for KFe2As2, and indeed in Figs. 11.2 and 11.10 the calculations for the actual DFT bandstructure of KFe2As2 are reported (squares) together with those for doped BaFe2As2 (i.e., in the so-called “virtual crystal approximation”). The two calculations differ mainly because KFe2As2 has a larger bare bandwidth. For both bandstructures however a Mott insulator is realized at half-filling for the chosen values of U = 2. 7eV and \(J/U = 0.25\) (cfr. Fig. 11.5 and footnote 5).

  7. 7.

    The best discussion of the relevance of the proposed cartoon for the physics of FeSC would be to calculate explicitly the spectra which are meant to be stylized by the cartoon. However, detailed, reliable, low-temperature orbitally resolved real-axis spectra are not yet easily obtained by state-of-the art DFT+DMFT techniques. We thus rely to the integrated spectral weight giving the orbital populations, much more easily and reliably available in SSMF (as well as in DMFT).

References

  1. Z.P. Yin, K. Haule, G. Kotliar, Nat. Mater. 10(12), 932 (2011). http://dx.doi.org/10.1038/nmat3120

  2. P. Hansmann, R. Arita, A. Toschi, S. Sakai, G. Sangiovanni, K. Held, Phys. Rev. Lett. 104, 197002 (2010). doi:10.1103/PhysRevLett.104.197002. http://link.aps.org/doi/10.1103/PhysRevLett.104.197002

  3. K. Haule, G. Kotliar, New J. Phys. 11(2), 025021 (2009). http://stacks.iop.org/1367-2630/11/i=2/a=025021

  4. M.D. Johannes, I.I. Mazin, Phys. Rev. B 79, 220510 (2009). doi:10.1103/PhysRevB.79. 220510. http://link.aps.org/doi/10.1103/PhysRevB.79.220510

  5. W.G. Yin, C.C. Lee, W. Ku, Phys. Rev. Lett. 105, 107004 (2010). doi:10.1103/PhysRevLett. 105.107004. http://link.aps.org/doi/10.1103/PhysRevLett.105.107004

  6. W.L. Yang, A.P. Sorini, C.C. Chen, B. Moritz, W.S. Lee, F. Vernay, P. Olalde-Velasco, J.D. Denlinger, B. Delley, J.H. Chu, J.G. Analytis, I.R. Fisher, Z.A. Ren, J. Yang, W. Lu, Z.X. Zhao, J. van den Brink, Z. Hussain, Z.X. Shen, T.P. Devereaux, Phys. Rev. B 80, 014508 (2009). doi:10.1103/PhysRevB.80.014508. http://link.aps.org/doi/10.1103/PhysRevB.80.014508

  7. F. Rullier-Albenque, D. Colson, A. Forget, H. Alloul, Phys. Rev. Lett. 103, 057001 (2009). doi:10.1103/PhysRevLett.103.057001. http://link.aps.org/doi/10.1103/PhysRevLett.103.057001

  8. M.M. Qazilbash, J.J. Hamlin, R.E. Baumbach, L. Zhang, D.J. Singh, M.B. Maple, D.N. Basov, Nat. Phys. 5(9), 647 (2009). http://dx.doi.org/10.1038/nphys1343

  9. L. de’ Medici, S.R. Hassan, M. Capone, X. Dai, Phys. Rev. Lett. 102, 126401 (2009)

    Google Scholar 

  10. L. de’ Medici, S. Hassan, M. Capone, J. Supercond. Nov. Magn. 22, 535 (2009)

    Google Scholar 

  11. S.P. Kou, T. Li, Z.Y. Weng, Europhys. Lett. 88, 17010 (2009)

    Article  Google Scholar 

  12. A. Hackl, M. Vojta, New J. Phys. 11, 055064 (2009)

    Article  Google Scholar 

  13. W.G. Yin, C.H. Lin, W. Ku, Phys. Rev. B 86, 081106 (2012). doi:10.1103/PhysRevB.86.081106. http://link.aps.org/doi/10.1103/PhysRevB.86.081106

  14. A. Shorikov, M. Korotin, S. Streltsov, S. Skornyakov, D. Korotin, V. Anisimov, J. Exp. Theor. Phys. 108, 121 (2009). doi:10.1134/S1063776109010154. http://dx.doi.org/10.1134/S1063776109010154

  15. M.S. Laad, L. Craco, arXiv e-prints (2009)

    Google Scholar 

  16. L. Craco, S. Leoni, Europhys. Lett. 92(6), 67003 (2010). http://stacks.iop.org/0295-5075/92/i=6/a=67003

  17. M. Aichhorn, S. Biermann, T. Miyake, A. Georges, M. Imada, Phys. Rev. B 82, 064504 (2010). doi:10.1103/PhysRevB.82.064504. http://link.aps.org/doi/10.1103/PhysRevB.82.064504

  18. H. Ishida, A. Liebsch, Phys. Rev. B 81, 054513 (2010). doi:10.1103/PhysRevB.81.054513. http://link.aps.org/doi/10.1103/PhysRevB.81.054513

  19. A. Liebsch, H. Ishida, Phys. Rev. B 82, 155106 (2010). doi:10.1103/PhysRevB.82.155106. http://link.aps.org/doi/10.1103/PhysRevB.82.155106

  20. P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A.J. Millis, S. Biermann, Nat. Phys. 8(4), 331 (2012). http://dx.doi.org/10.1038/nphys2250

  21. Z.P. Yin, K. Haule, G. Kotliar, Phys. Rev. B 86, 195141 (2012). doi:10.1103/PhysRevB.86.195141. http://link.aps.org/doi/10.1103/PhysRevB.86.195141

  22. T. Misawa, K. Nakamura, M. Imada, Phys. Rev. Lett. 108, 177007 (2012). doi:10.1103/PhysRevLett.108.177007. http://link.aps.org/doi/10.1103/PhysRevLett.108.177007

  23. R. Yu, Q. Si, Phys. Rev. B 86, 085104 (2012). doi:10.1103/PhysRevB.86.085104. http://link.aps.org/doi/10.1103/PhysRevB.86.085104

  24. R. Yu, Q. Si, arXiv e-prints (2012)

    Google Scholar 

  25. E. Bascones, B. Valenzuela, M.J. Calderón, arXiv e-prints (2012)

    Google Scholar 

  26. H. Ikeda, R. Arita, J. Kuneš, Phys. Rev. B 82, 024508 (2010). doi:10.1103/PhysRevB.82.024508. http://link.aps.org/doi/10.1103/PhysRevB.82.024508

  27. N. Lanatà, H.U.R. Strand, G. Giovannetti, B. Hellsing, L. de’ Medici, M. Capone, Phys. Rev. B 87, 045122 (2013). doi:10.1103/PhysRevB.87.045122. http://link.aps.org/doi/10.1103/PhysRevB.87.045122

  28. L. de’ Medici, A. Georges, S. Biermann, Phys. Rev. B 72, 205124 (2005)

    Google Scholar 

  29. S.R.Hassan, L. de’ Medici, Phys. Rev. B 81, 035106 (2010)

    Google Scholar 

  30. L. de’ Medici, G. Giovannetti, M. Capone, Phys. Rev. Lett. 112, 177001 (2014). doi:10.1103/PhysRevLett.112.177001. http://link.aps.org/doi/10.1103/PhysRevLett.112.177001

  31. F. Hardy, A.E. Böhmer, D. Aoki, P. Burger, T. Wolf, P. Schweiss, R. Heid, P. Adelmann, Y.X. Yao, G. Kotliar, J. Schmalian, C. Meingast, Phys. Rev. Lett. 111, 027002 (2013). doi:10.1103/PhysRevLett.111.027002. http://link.aps.org/doi/10.1103/PhysRevLett.111.027002

  32. L. de’ Medici, Phys. Rev. B 83, 205112 (2011). doi:10.1103/PhysRevB.83.205112

    Google Scholar 

  33. X. Wang, M.J. Han, L. de’ Medici, H. Park, C.A. Marianetti, A.J. Millis, Phys. Rev. B 86, 195136 (2012). doi:10.1103/PhysRevB.86.195136. http://link.aps.org/doi/10.1103/PhysRevB.86.195136

  34. N. Parragh, G. Sangiovanni, P. Hansmann, S. Hummel, K. Held, A. Toschi, Phys. Rev. B 88, 195116 (2013). doi:10.1103/PhysRevB.88.195116. http://link.aps.org/doi/10.1103/PhysRevB.88.195116

  35. P. Hansmann, N. Parragh, A. Toschi, G. Sangiovanni, K. Held, New J. Phys. 16(3), 033009 (2014). doi:10.1088/1367-2630/16/3/033009

    Article  Google Scholar 

  36. H.T. Dang, A.J. Millis, C.A. Marianetti, Phys. Rev. B 89, 161113 (2014). doi:10.1103/PhysRevB.89.161113. http://link.aps.org/doi/10.1103/PhysRevB.89.161113

  37. K. Haule, T. Birol, G. Kotliar, arXiv e-prints (2013)

    Google Scholar 

  38. P. Hansmann, N. Parragh, A. Toschi, G. Sangiovanni, K. Held, New J. Phys. 16(3), 033009 (2014). http://stacks.iop.org/1367-2630/16/i=3/a=033009

  39. A. Georges, L. de’ Medici, J. Mravlje, Ann. Rev. Condens. Matter Phys. 4(1) (2013). doi:10.1146/annurev-conmatphys-020911-125045

    Google Scholar 

  40. T. Miyake, K. Nakamura, R. Arita, M. Imada, J. Phys. Soc. Jpn. 79(4), 044705 (2010). doi:10.1143/JPSJ.79.044705. http://jpsj.ipap.jp/link?JPSJ/79/044705/

  41. J. Hubbard, Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 281, 401 (1964)

    Article  Google Scholar 

  42. W. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    Article  Google Scholar 

  43. P. Coleman, Phys. Rev. B 29, 3035 (1984)

    Article  Google Scholar 

  44. G. Kotliar, A. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986)

    Article  Google Scholar 

  45. R. Žitko, D. Hansen, E. Perepelitsky, J. Mravlje, A. Georges, B.S. Shastry, Phys. Rev. B 88, 235132 (2013). doi:10.1103/PhysRevB.88.235132. http://link.aps.org/doi/10.1103/PhysRevB.88.235132

  46. P. Lu, Phys. Rev. B 49, 5687 (1994)

    Article  Google Scholar 

  47. O. Gunnarsson, E. Koch, R. Martin, Phys. Rev. B 54, R11026 (1996)

    Article  Google Scholar 

  48. M.J. Rozenberg, Phys. Rev. B 55, R4855 (1997)

    Article  Google Scholar 

  49. S. Florens, A. Georges, G. Kotliar, O. Parcollet, Phys. Rev. B 66, 205102 (2002)

    Article  Google Scholar 

  50. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  Google Scholar 

  51. P. Nozières, Eur. Phys. J. B: Condens. Matter Complex Syst. 6(4), 447 (1998). doi:10.1007/s100510050571. http://dx.doi.org/10.1007/s100510050571

  52. A. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  53. B. Coqblin, J.R. Schrieffer, Phys. Rev. 185, 847 (1969). doi:10.1103/PhysRev.185.847. http://link.aps.org/doi/10.1103/PhysRev.185.847

  54. I. Okada, K. Yosida, Prog. Theor. Phys. 49, 1483 (1973)

    Article  Google Scholar 

  55. J.R. Schrieffer, J. Appl. Phys. 38, 1143 (1967)

    Article  Google Scholar 

  56. A.H. Nevidomskyy, P. Coleman, Phys. Rev. Lett. 103(14), 147205 (2009). doi:10.1103/ PhysRevLett.103.147205

    Article  Google Scholar 

  57. C. Aron, G. Kotliar, arXiv e-prints (2014)

    Google Scholar 

  58. D. van der Marel, G.A. Sawatzky, Phys. Rev. B 37, 10674 (1988). doi:10.1103/PhysRevB.37.10674. http://link.aps.org/doi/10.1103/PhysRevB.37.10674

  59. D. van der Marel, The Electronic Structure of Embedded Transition-Metal Atoms. Ph.D. thesis, Rijkuniversiteit Groningen, 1985

    Google Scholar 

  60. T. Pruschke, R. Bulla, Eur. Phys. J. B 44, 217 (2005)

    Article  Google Scholar 

  61. L. de’ Medici, J. Mravlje, A. Georges, Phys. Rev. Lett. 107, 256401 (2011). doi:10.1103/PhysRevLett.107.256401

    Google Scholar 

  62. A.M. Läuchli, P. Werner, Phys. Rev. B 80, 235117 (2009). doi:10.1103/PhysRevB.80.235117. http://link.aps.org/doi/10.1103/PhysRevB.80.235117

  63. S.L. Skornyakov, V.I. Anisimov, D. Vollhardt, Phys. Rev. B 86, 125124 (2012). doi:10.1103/PhysRevB.86.125124. http://link.aps.org/doi/10.1103/PhysRevB.86.125124

  64. P. Werner, E. Gull, M. Troyer, A. Millis, Phys. Rev. Lett. 101, 166405 (2008)

    Article  Google Scholar 

  65. A. Lucarelli, A. Dusza, F. Pfuner, P. Lerch, J.G. Analytis, J.H. Chu, I.R. Fisher, L. Degiorgi, New J. Phys. 12(7), 073036 (2010). http://stacks.iop.org/1367-2630/12/i=7/a=073036

  66. N.L. Wang, W.Z. Hu, Z.G. Chen, R.H. Yuan, G. Li, G.F. Chen, T. Xiang, J. Phys.: Condens. Matter 24(29), 294202 (2012). http://stacks.iop.org/0953-8984/24/i=29/a=294202

  67. H.Q. Yuan, L. Jiao, F.F. Balakirev, J. Singleton, C. Setty, J.P. Hu, T. Shang, L.J. Li, G.H. Cao, Z.A. Xu, B. Shen, H.H. Wen, arXiv e-prints (2011)

    Google Scholar 

  68. H. Ding, K. Nakayama, P. Richard, S. Souma, T. Sato, T. Takahashi, M. Neupane, Y.M. Xu, Z.H. Pan, A.V. Fedorov, Z. Wang, X. Dai, Z. Fang, G.F. Chen, J.L. Luo, N.L. Wang, J. Phys.: Condens. Matter 23(13), 135701 (2011). http://stacks.iop.org/0953-8984/23/i=13/a=135701

  69. T. Yoshida, S. Ideta, I. Nishi, A. Fujimori, M. Yi, R.G. Moore, S.K. Mo, D.H. Lu, Z.X. Shen, Z. Hussain, K. Kihou, P.M. Shirage, H. Kito, C.H. Lee, A. Iyo, H. Eisaki, H. Harima, arXiv e-prints (2012)

    Google Scholar 

  70. W. Malaeb, T. Shimojima, Y. Ishida, K. Okazaki, Y. Ota, K. Ohgushi, K. Kihou, T. Saito, C.H. Lee, S. Ishida, M. Nakajima, S. Uchida, H. Fukazawa, Y. Kohori, A. Iyo, H. Eisaki, C.T. Chen, S. Watanabe, H. Ikeda, S. Shin, Phys. Rev. B 86, 165117 (2012). doi:10.1103/PhysRevB.86.165117. http://link.aps.org/doi/10.1103/PhysRevB.86.165117

  71. D. Arčon, P. Jeglič, A. Zorko, A. Potočnik, A.Y. Ganin, Y. Takabayashi, M.J. Rosseinsky, K. Prassides, Phys. Rev. B 82, 140508 (2010). doi:10.1103/PhysRevB.82.140508. http://link.aps.org/doi/10.1103/PhysRevB.82.140508

  72. Z. Xu, J. Wen, G. Xu, S. Chi, W. Ku, G. Gu, J.M. Tranquada, Phys. Rev. B 84, 052506 (2011). doi:10.1103/PhysRevB.84.052506. http://link.aps.org/doi/10.1103/PhysRevB.84.052506

  73. A. Tamai, A.Y. Ganin, E. Rozbicki, J. Bacsa, W. Meevasana, P.D.C. King, M. Caffio, R. Schaub, S. Margadonna, K. Prassides, M.J. Rosseinsky, F. Baumberger, Phys. Rev. Lett. 104, 097002 (2010). doi:10.1103/PhysRevLett.104.097002. http://link.aps.org/doi/10.1103/PhysRevLett.104.097002

  74. M. Yi, D. Lu, R. Yu, S. Riggs, J.H. Chu, B. Lv, Z. Liu, M. Lu, Y. Cui, M. Hashimoto, S.K. Mo, Z. Hussain, C.W. Chu, I. Fisher, Q. Si, Z.X. Shen, arXiv e-prints (2012)

    Google Scholar 

  75. Z. Wang, M. Schmidt, J. Fischer, V. Tsurkan, M. Greger, D. Vollhardt, A. Loidl, J. Deisenhofer, Nat. Commun. 5 (2014). http://dx.doi.org/10.1038/ncomms4202

  76. H. Gretarsson, A. Lupascu, J. Kim, D. Casa, T. Gog, W. Wu, S.R. Julian, Z.J. Xu, J.S. Wen, G.D. Gu, R.H. Yuan, Z.G. Chen, N.L. Wang, S. Khim, K.H. Kim, M. Ishikado, I. Jarrige, S. Shamoto, J.H. Chu, I.R. Fisher, Y.J. Kim, Phys. Rev. B 84, 100509 (2011). doi:10.1103/PhysRevB.84.100509. http://link.aps.org/doi/10.1103/PhysRevB.84.100509

  77. D.C. Johnston, Adv. Phys. 59(6), 803 (2010). doi:10.1080/00018732.2010.513480. http://www.tandfonline.com/doi/abs/10.1080/00018732.2010.513480

  78. J. An, A.S. Sefat, D.J. Singh, M.H. Du, Phys. Rev. B 79, 075120 (2009). doi:10.1103/ PhysRevB.79.075120. http://link.aps.org/doi/10.1103/PhysRevB.79.075120

  79. P. Werner, A. Millis, Phys. Rev. Lett. 99, 126405 (2007)

    Article  Google Scholar 

  80. A. Koga, N. Kawakami, T. Rice, M. Sigrist, Phys. Rev. Lett. 92, 216402 (2004)

    Article  Google Scholar 

  81. K. Inaba, A. Koga, J. Phys. Soc. Jpn. 76, 094712 (2006)

    Article  Google Scholar 

  82. E. Jakobi, N. Blümer, P. Van Dongen, Phys. Rev. B 73, 155106 (2006)

    Article  Google Scholar 

  83. E. Jakobi, N. Blümer, P. Van Dongen, Phys. Rev. B 87, 205135 (2013)

    Article  Google Scholar 

  84. A. Koga, N. Kawakami, T. Rice, M. Sigrist, Phys. Rev. B 72, 045128 (2005)

    Article  Google Scholar 

  85. E.A. Winograd, L. de’ Medici, Phys. Rev. B 89, 085127 (2014). doi:10.1103/PhysRevB. 89.085127. http://link.aps.org/doi/10.1103/PhysRevB.89.085127

  86. E. Gull, M. Ferrero, O. Parcollet, A. Georges, A. Millis, Phys. Rev. B 82, 155101 (2010)

    Article  Google Scholar 

  87. D. Fobes, I.A. Zaliznyak, Z. Xu, R. Zhong, G. Gu, J.M. Tranquada, L. Harriger, D. Singh, V.O. Garlea, M. Lumsden, B. Winn, Phys. Rev. Lett. 112, 187202 (2014). doi:10.1103/PhysRevLett. 112.187202. http://link.aps.org/doi/10.1103/PhysRevLett.112.187202

  88. A.I. Poteryaev, M. Ferrero, A. Georges, O. Parcollet, Phys. Rev. B 78, 045115 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This chapter is heavily founded on [30], a work that was performed with Gianluca Giovannetti and Massimo Capone, to whom I am indebted. The realistic bandstructures discussed in this chapter are those used in [30] and have been calculated by G. Giovannetti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca de’ Medici .

Editor information

Editors and Affiliations

Appendix: The Slope of the Linear Z α (n α ) in the Orbital-Decoupling Regime

Appendix: The Slope of the Linear Z α (n α ) in the Orbital-Decoupling Regime

The direct proportionality of the quasiparticle weight to the individual orbital population when approaching the Mott insulator is the main evidence of the orbital decoupling mechanism induced by Hund’s coupling in the models for FeSC. However it can be noticed from Fig. 11.14 that the slope of the linear behavior is not universal.

In order to have an indication on how the bandstructure determines the slopes of the linear Z(n) for each orbital, I have performed a simplified analysis on a Hubbard model with two bands of equal half-bandwidth D (with hopping integrals as appropriate for a doublet in a cubic environment, see, e.g., [88]), slightly hybridized (by an interorbital hopping V = 0. 05D) and split by a crystal field Δ. The Kanamori density–density of the interaction is used, with U = 3D and \(J = U/4\) and the model is solved within slave-spin mean-field.

A Mott insulator is found at half-filling and strong orbital differentiation in the mass enhancements for a large region of doping around it: as expected, for electron-doping (hole-doping being the same, for particle-hole symmetry), for a small crystal-field splitting the upper orbital is closer to individual half-filling and more correlated than the lower one. This situation becomes extreme very close to half-filling and an orbital-selective Mott transition takes place eventually (albeit retarded by the hybridization—unlike the five-orbital case in the regime relevant for FeSC, where the hybridization actually prevents the OSMT from happening). This happens when the upper orbital reaches individual half-filling and has a Mott gap at the chemical potential while the lower band remains metallic until global half-filling, where it becomes Mott insulating too.

Fig. 11.16
figure 16

Orbitally resolved quasiparticle weight as a function of the respective orbital population in a two band Hubbard model with U = 3D and \(J/U = 0.25\) and a light hybridization V = 0. 05D, for several values of the crystal-field splitting Δ between the two orbital energies. The linear behavior typical of the orbital-decoupling near the Mott insulating state is indeed found in both orbitals. Inset: the slope of the steeper curve (corresponding to the orbital higher in energy) in the electron-doped case scales with the bare crystal-field splitting

The curves Z α (n α ) are indeed linear (see Fig. 11.16) and the slope is steeper for the upper band. Thus at a given orbital population, the mass enhancement is heightened by the presence of other more correlated (possibly even insulating) orbitals. It is found that the slopes of the curves for the upper orbital (the most correlated and closest to half-filling, that can be viewed as mimicking the t2g orbitals in the realistic calculations) scale exactly (see inset in Fig. 11.1d) with the bare-crystal field splitting (it is worth recalling here that the crystal field renormalized by the interactions changes with the filling, instead).

The physics described in this simplified model is quite similar to the one we have investigated in the ab-initio calculations for iron superconductors. Indeed this scaling seems to apply to the t 2g orbitals in the three compounds studied in [30]: while for the studied iron pnictides (LaFeAsO and BaFe2As2) the xy orbital has a steeper slope than the xzyz (which have in turn a slope steeper than the eg orbitals), in FeSe there is an inversion, and the curve for the xy is less steep than for the xzyz. Now, this seems to reflect the bare crystal fields here too, since as reported in table in Fig. 11.3 the bare energy for the xy is above the one for the xzyz in LaFeAsO and BaFe2As2, while it is below in the chalcogenides.

Thus it seems that albeit the renormalized crystal-field makes the xy closer to half-filling and hence more correlated than the xz/yz, the footprint of the values of the crystal-field in the non-interacting system remains in the slopes of the Z α (n α ). Further work is however needed in order to clarify if this is always true, and what is the mechanism behind.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de’ Medici, L. (2015). Weak and Strong Correlations in Fe Superconductors. In: Johnson, P., Xu, G., Yin, WG. (eds) Iron-Based Superconductivity. Springer Series in Materials Science, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-11254-1_11

Download citation

Publish with us

Policies and ethics