Skip to main content

On the Three, Five and Other Periodic Orbits of Some Polynomials

  • Conference paper
  • First Online:
Book cover Analysis and Simulation of Electrical and Computer Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 324))

  • 1410 Accesses

Abstract

In the paper all three and five periodic orbits of certain (known and a bit less known) quadratic and cubic polynomials as well as polynomials of order greater than 4 are generated. Other periodic orbits are also discussed here. The basic polynomials considered in this paper are the minimal polynomials of \(2\mathop {\cos } \frac{2\pi }{2n - 1}\) or \(2\mathop {\sin } \frac{2\pi }{2n - 1}\) for every \(n = 4,5,6,7,8\). The concept of n-periodic trigonometric orbits is introduced. Also generalizations of Benedetto identities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benedetto R (2001) An elementary product identity in polynomial dynamics. Am Math Mon 108:860–864

    Article  MATH  MathSciNet  Google Scholar 

  2. Mason JC, Handscomb DC (2003) Chebyshev polynomials. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  3. Rivlin TJ (1990) Chebyshev polynomials from approximation theory to algebra and number theory. Wiley, New York

    MATH  Google Scholar 

  4. Paszkowski S (1975) Numerical applications of Chebyshev polynomials and series. PWN, Warsaw (in Polish)

    Google Scholar 

  5. Wituła R, Complex numbers, polynomials and partial fraction decomposition, vols I and II. Wydawnictwo Politechniki Śląskiej (2010) (in Polish)

    Google Scholar 

  6. Wituła R, Słota D (2006) On modified Chebyshev polynomials. J Math Anal Appl 324:321–343

    Article  MATH  MathSciNet  Google Scholar 

  7. Tričković SB, Stanković MS (2004) On periodic solutions of a certain difference equation. Fibonacci Q 42:300–305

    MATH  Google Scholar 

  8. Wituła R, Słota D (2009) Fixed and periodic points of polynomials generated by minimal polynomials of 2 cos (π/n). Int J Bifur Chaos Appl Sci Eng 19:3005–3016

    Article  MATH  Google Scholar 

  9. Hetmaniok E, Lorenc P, Słota D, Wituła R (in press) Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials. In: Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, R. Wituła, D. Słota, W. Hołubowski (eds.), Wyd. Pol. Śl., Gliwice.

    Google Scholar 

  10. Trawiński T, Kołton W, Hetmaniok E, Słota D, Wituła R (2013) Analysis of Chaotic phenomena occurring in chosen branched kinematic chains of robot manipulators. In: Wybrane Zagadnienia Elektrotechniki i Elektroniki, pp 1–8. Czarna

    Google Scholar 

  11. Wituła R (2011) Formulae for sums of unimodular complex numbers. WPKJS, Gliwice (in Polish)

    Google Scholar 

  12. Wituła R, Słota D (2009) Decomposition of certain symmetric functions of powers of cosine and sine functions. Int J Pure Appl Math 50:1–12

    MATH  MathSciNet  Google Scholar 

  13. Wituła R, Słota D (2007) New Ramanujan-type formulas and quasi-fibonacci numbers of order 7. J Integer Seq 10 (Article 07.5.6)

    Google Scholar 

  14. Wituła R, Słota D (2007) Quasi-fibonacci numbers of order 11. J Integer Seq 10 (Article 07.8.5)

    Google Scholar 

  15. Wituła R, Słota D (2010) Quasi-fibonacci numbers of order 13 on the occasion of the thirteenth international conference on fibonacci numbers and their applications. Congr Numer 201:89–107

    Google Scholar 

  16. Baker IN (1960) The existence of fixpoints of entire functions. Math Z 73:280–284

    Article  MATH  MathSciNet  Google Scholar 

  17. Baker IN (1964) Fixpoints of polynomials and rational functions. J London Math Soc 39:615–622

    Article  MATH  MathSciNet  Google Scholar 

  18. Pezda T (1994) Cycles of polynomials in algebraically closed fields of positive characteristic. Colloq Math 67:187–195

    MATH  MathSciNet  Google Scholar 

  19. Pezda T (1996) Cycles of polynomials in algebraically closed fields of positive characteristic II. Colloq Math 71:23–30

    MATH  MathSciNet  Google Scholar 

  20. Hacibekiro\({\tilde{\text{g}}}\)lu G, Ca\({\tilde{\text{g}}}\)lar M, Polato\({\tilde{\text{g}}}\)lu Y (2009) The higher order Schwarzian derivative: its applications for chaotic behavior and new invariant sufficient condition of Chaos. Nonlinear Anal Real World Appl 10:1270–1275

    Google Scholar 

  21. Devaney RL (1989) An introduction to chaotic dynamical systems. Addison-Wesley, Boston

    MATH  Google Scholar 

  22. Gulick D (2012) Encounters with Chaos and fractals. CRC Press, Boca Raton

    MATH  Google Scholar 

  23. Kwietniak D, Oprocha P (2008) Chaos theory from the mathematical viewpoint. Mat Stosow 9:1–45 (in Polish)

    MathSciNet  Google Scholar 

  24. Li TY, Yorke JA (1975) Period three implies Chaos. Am Math Mon 82:985–992

    Article  MATH  MathSciNet  Google Scholar 

  25. Ciesielski K, Pogoda Z (2008) On ordering the natural numbers or the Sharkovski theorem. Am Math Mon 115:159–165

    MATH  MathSciNet  Google Scholar 

  26. Du BS (2007) A simple proof of Sharkovsky’s theorem revisited. Am Math Mon 114:152–155

    MATH  Google Scholar 

  27. Elaydi SN (2005) An introduction to difference equations. Springer, New York

    MATH  Google Scholar 

  28. Misiurewicz M (1997) Remarks on Sharkovsky’s theorem. Am Math Mon 104:846–847

    Article  MATH  MathSciNet  Google Scholar 

  29. Dunlap R (2006) The golden ratio and fibonacci numbers. World Scientific, Singapore

    Google Scholar 

  30. Hsu C-H, Li M-C (2002) Transitivity implies period six: a simple proof. Am Math Mon 109:840–843

    Article  MATH  MathSciNet  Google Scholar 

  31. Vellekoop M, Berglund R (1994) On intervals, transitivity = Chaos. Am Math Mon 101:353–355

    Article  MATH  MathSciNet  Google Scholar 

  32. Kuipers L, Niederreiter H (1974) Uniform Distribution of Sequences. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Wituła .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wituła, R., Hetmaniok, E., Słota, D., Trawiński, T., Kołton, W. (2015). On the Three, Five and Other Periodic Orbits of Some Polynomials. In: Gołębiowski, L., Mazur, D. (eds) Analysis and Simulation of Electrical and Computer Systems. Lecture Notes in Electrical Engineering, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-319-11248-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11248-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11247-3

  • Online ISBN: 978-3-319-11248-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics