Attentional Distribution and Spatial Language

  • Thomas Kluth
  • Holger Schultheis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8684)

Abstract

Whether visual spatial attention can be split to several discontinuous locations concurrently is still an open and intensely debated question. We address this question in the domain of spatial language use by comparing two existing and three newly proposed computational models. All models are assessed regarding their ability to account for human acceptability ratings for how well a given spatial term describes the spatial arrangement of two functionally related objects. One of the existing models assumes that taking the functional relations into account involves split attention. All new models incorporate functional relations without assuming split attention. Our simulations suggest that not assuming split attention is more appropriate for taking the functional relations into account than assuming split attention. At the same time, the simulations raise doubt as to whether any of the models appropriately captures the impact of functional relations on spatial language use.

Keywords

Function Extension Functional Part Spatial Term Angular Component Attentional Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Posner, M.I.: Orienting of attention. Quarterly Journal of Experimental Psychology 32, 3–25 (1980)CrossRefGoogle Scholar
  2. 2.
    Eriksen, C.W., Yeh, Y.Y.: Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance 11, 583–597 (1985)Google Scholar
  3. 3.
    McCormick, P.A., Klein, R., Johnston, S.: Splitting versus sharing focal attention: Comment on Castiello and Umilta. Journal of Experimental Psychology: Human Perception and Performance 24, 350–357 (1992, 1998)Google Scholar
  4. 4.
    Yap, J.Y., Lim, S.W.H.: Media multitasking predicts unitary versus splitting visual focal attention. Journal of Cognitive Psychology 25, 889–902 (2013)CrossRefGoogle Scholar
  5. 5.
    Eimer, M., Grubert, A.: Spatial attention can be allocated rapidly and in parallel to new visual objects. Current Biology 24, 193–198 (2014)CrossRefGoogle Scholar
  6. 6.
    Jans, B., Peters, J.C., De Weerd, P.: Visual Spatial Attention to Multiple Locations at Once: The Jury Is Still Out. Psychological Review 117(2), 637–684 (2010)CrossRefGoogle Scholar
  7. 7.
    Carlson, L.A., Logan, G.D.: Attention and spatial language. In: Itti, L., Rees, G., Tsotsos, J. (eds.) Neurobiology of Attention, pp. 330–336. Elsevier, San Diego (2005)CrossRefGoogle Scholar
  8. 8.
    Carlson, L.A., Logan, G.D.: Using spatial terms to select an object. Memory & Cognition 29, 883–892 (2001)CrossRefGoogle Scholar
  9. 9.
    Franconeri, S.L., Scimeca, J.M., Roth, J.C., Helseth, S.A., Kahn, L.E.: Flexible visual processing of spatial relationships. Cognition 122, 210–227 (2012)CrossRefGoogle Scholar
  10. 10.
    Regier, T., Carlson, L.A.: Grounding Spatial Language in Perception: An Empirical and Computational Investigation. Journal of Experimental Psychology: General 130(2), 273–298 (2001)CrossRefGoogle Scholar
  11. 11.
    Coventry, K.R., Garrod, S.C.: Saying, seeing, and acting: The psychological semantics of spatial prepositions. Psychology Press, New York (2004)Google Scholar
  12. 12.
    Carlson-Radvansky, L.A., Covey, E.S., Lattanzi, K.M.: “What” Effects on “Where”: Functional Influences on Spatial Relations. Psychological Science 10(6), 516–521 (1999)CrossRefGoogle Scholar
  13. 13.
    Carlson, L.A., Regier, T., Lopez, W., Corrigan, B.: Attention Unites Form and Function in Spatial Language. Spatial Cognition & Computation 6(4), 295–308 (2006)CrossRefGoogle Scholar
  14. 14.
    Logan, G.D., Sadler, D.D.: A computational analysis of the apprehension of spatial relations. In: Bloom, P., Peterson, M., Garrett, M., Nadel, L. (eds.) Language and Space, pp. 493–529. M.I.T. Press, MA (1996)Google Scholar
  15. 15.
    Hörberg, T.: Influences of Form and Function on the Acceptability of Projective Prepositions in Swedish. Spatial Cognition & Computation 8(3), 193–218 (2008)CrossRefGoogle Scholar
  16. 16.
    Hörberg, T.: Influences of Form and Function on Spatial Relations: Establishing functional and geometric influences on projective prepositions in Swedish. Magister thesis, Stockholm University (2006)Google Scholar
  17. 17.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  18. 18.
    Roberts, S., Pashler, H.: How persuasive is a good fit? A comment on theory testing. Psychological Review 107(2), 358–367 (2000)CrossRefGoogle Scholar
  19. 19.
    Pitt, M.A., Myung, I.J.: When a good fit can be bad. Trends in Cognitive Sciences 6(10), 421–425 (2002)CrossRefGoogle Scholar
  20. 20.
    Schultheis, H., Singhaniya, A., Chaplot, D.S.: Comparing Model Comparison Methods. In: Proceedings of the 35th Annual Conference of the Cognitive Science Society (2013)Google Scholar
  21. 21.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, New York (1993)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Kluth
    • 1
  • Holger Schultheis
    • 1
  1. 1.Cognitive SystemsUniversität BremenBremenGermany

Personalised recommendations