Skip to main content

On Egocentric and Allocentric Maps

  • Conference paper
Spatial Cognition IX (Spatial Cognition 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8684))

Included in the following conference series:

Abstract

The question as to whether spatial information is coded using an egocentric or an allocentric frame of reference has led to three prominent but competing models of spatial cognition being proposed. In this paper, these models are reviewed on theoretical rather than empirical grounds and are shown to be similar. While using these two different frames of reference produce equivalent maps, the action guiding property of egocentric maps means that these maps are best computed at the perceptual-motor level and the ease of updating an allocentric map means that these maps are best computed for representing the larger environment. However, the latter is simply too empowering and is not suitable as a “map in the head”. Based on a recent computational theory of perceptual mapping, we suggest an alternative – an allocentric trace of local environments visited rather than an allocentric map of the physical environment itself. Such a trace is egocentric and transient and has both a spatial and a temporal aspect. It provides a rich input that will allow different species to learn a different enduring representation of its environment, each tailored to their own needs for survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benhamou, S.: No evidence for cognitive mapping in rats. Animal Behavior 52, 201–212 (1996)

    Article  Google Scholar 

  2. Bennett, A.T.D.: Do animals have cognitive maps? The Journal of Experimental Biology 199, 219–224 (1996)

    Google Scholar 

  3. Briscoe, R.: Egocentric spatial representation in action and perception. Philosophy and Phenomenological Research 79(2), 423–460 (2009)

    Article  Google Scholar 

  4. Burgess, N.: Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences 10, 551–557 (2006)

    Article  Google Scholar 

  5. Campbell, J.: Past, space and time. MIT Press, Cambridge (1994)

    Google Scholar 

  6. Diwadkar, V.A., McNamara, T.P.: Viewpoint dependence in scene recognition. Psychological Science 8, 302–307 (1997)

    Article  Google Scholar 

  7. Durrant-Whyte, H., Bailey, T.: Simultaneous Localization and Mapping (SLAM): Part I. IEEE Robotics & Automation Magazine 13(2), 99–110 (2006)

    Article  Google Scholar 

  8. Evans, G.: The varieties of reference. Oxford University Press, Oxford (1982)

    Google Scholar 

  9. Glennerster, A., Hansard, M.E., Fitzgibbon, A.W.: View-based approaches to spatial representation in human vision. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 193–208. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Galati, G., Pelle, G., Berthoz, A., Committeri, G.: Multiple reference frames used by the human brain for spatial perception and memory. Experimental Brain Research 206(2), 109–120 (2010)

    Article  Google Scholar 

  11. Gallistel, C.R.: The organization of learning. MIT Press, Cambridge (1990)

    Google Scholar 

  12. Grush, R.: Self, world and space: The meaning and mechanisms of ego- and allocentric spatial representation. Brain and Mind 1(1), 59–92 (2000)

    Article  Google Scholar 

  13. Hurlbert, A.C.: Knowing is seeing. Current Biology 4, 423–426 (1994)

    Article  Google Scholar 

  14. Hossain, M.Z., Yeap, W.K.: How Albot1 computes its topological-metric map. Procedia – Social and Behavioral Sciences 97, 553–560 (2013)

    Article  Google Scholar 

  15. Ishikawa, T., Montello, D.R.: Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology 52, 93–129 (2006)

    Article  Google Scholar 

  16. Jefferies, M.E., Yeap, W.K. (eds.): Robotics and cognitive approaches to spatial mapping. Springer, Berlin (2008)

    MATH  Google Scholar 

  17. Mackintosh, N.J.: Do not ask whether they have a cognitive map, but how they find their way about. Psicologica 23, 165–185 (2002)

    Google Scholar 

  18. McNamara, T.P.: How are the locations of objects in the environment represented in memory? In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 174–191. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. McNamara, T.P., Rump, B., Werner, S.: Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin and Review 10(3), 589–595 (2003)

    Article  Google Scholar 

  20. McNaughton, B.L., Chen, L.L., Markus, E.J.: “Dead reckoning,” landmark learning, and the sense of direction: A neurophysiological and computational hypothesis. Journal of Cognitive Neuroscience 3, 190–202 (1991)

    Article  Google Scholar 

  21. Mou, W., McNamara, T.P.: Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory and Cognition 28, 162–170 (2002)

    Google Scholar 

  22. Mou, W., McNamara, T.P., Rump, B., Xiao, C.: Roles of egocentric and allocentric spatial representations in locomotion and reorientation. Journal of Experimental Psychology: Learning, Memory and Cognition 12(6), 1274–1290 (2006)

    Google Scholar 

  23. Mou, W., McNamara, T.P., Valiquette, C.M., Rump, B.: Allocentric and egocentric updating of spatial memories. Journal of Experimental Psychology: Learning, Memory and Cognition 30(1), 142–157 (2004)

    Google Scholar 

  24. Normand, E., Boesch, C.: Sophisticated Euclidean maps in forest chimpanzees. Animal Behaviour 77, 1195–1201 (2009)

    Article  Google Scholar 

  25. Noser, R., Byrne, R.W.: Travel routes and planning of visits to out-of-sight resources in wild chacma baboons, Papio ursinus. Animal Behaviour 73, 257–266 (2007)

    Article  Google Scholar 

  26. Paillard, J.: Motor and representational framing of space. In: Paillard, J. (ed.) Brain and Space, pp. 163–182. Oxford University Press, Oxford (1991)

    Google Scholar 

  27. Pecchia, T., Vallortigara, G.: View-based strategy for reorientation by geometry. The Journal of Experimental Biology 213, 2987–2996 (2010)

    Article  Google Scholar 

  28. Rump, B., McNamara, T.P.: Updating in models of spatial memory. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 249–269. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Shelton, A.L., McNamara, T.P.: Systems of spatial reference in human memory. Cognitive Psychology 43, 274–310 (2001)

    Article  Google Scholar 

  30. Sholl, M.J.: The role of a self-reference system in spatial navigation. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 217–232. Springer, Heidelberg (2001)

    Google Scholar 

  31. Snowden, R.J.: Visual perception: Here’s mud in your mind’s eye. Current Biology 9, R336-R337 (1999)

    Article  Google Scholar 

  32. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo Localization for Mobile Robots. Artificial Intelligence 128(1-2), 99–141 (2001)

    Article  MATH  Google Scholar 

  33. Tolman, E.C.: Cognitive maps in rats and men. Psychological Review 55, 189–208 (1948)

    Article  Google Scholar 

  34. Waller, D., Hodgson, E.: Transient and enduring spatial representations under disorientation and self-rotation. Journal of Experimental Psychology: Learning, Memory, & Cognition 32, 867–882 (2006)

    Google Scholar 

  35. Wang, R.F., Spelke, E.S.: Updating egocentric representations in human navigation. Cognition 77, 215–250 (2000)

    Article  Google Scholar 

  36. Wang, R.F., Spelke, E.S.: Human spatial representation: Insights from animals. Trends in Cognitive Sciences 6(9), 376–382 (2002)

    Article  Google Scholar 

  37. Yeap, W.K.: A computational theory of perceptual mapping. In: Proceedings of the Cognitive Science Conference, Boston, USA, pp. 429–434 (2011)

    Google Scholar 

  38. Yeap, W.K., Hossain, M.Z., Brunner, T.: On the implementation of a theory of perceptual mapping. In: Proceedings of the Australasian Conference on Artificial Intelligence, Perth, Australia, pp. 739–748 (2011)

    Google Scholar 

  39. Zhang, H., Mou, W., McNamara, T.P.: Spatial updating according to a fixed reference direction of a briefly viewed layout. Cognition 119, 419–429 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yeap, W.K. (2014). On Egocentric and Allocentric Maps. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds) Spatial Cognition IX. Spatial Cognition 2014. Lecture Notes in Computer Science(), vol 8684. Springer, Cham. https://doi.org/10.1007/978-3-319-11215-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11215-2_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11214-5

  • Online ISBN: 978-3-319-11215-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics