Skip to main content

Spatial Concepts: Sensitivity to Changes in Geometric Properties in Environmental and Figural Perception

  • Conference paper
  • 1263 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8684))

Abstract

This study examined spatial concepts in environment perception, by looking at people’s reaction to changes in shape, scale, orientation, and topology while navigating in a virtual environment, as contrasted to the case of figural perception. Although people attended to changes in shape, they were most sensitive to a topological relation and discriminated it qualitatively from other transformations. In environment perception, compared to figural perception, the property of similarity did not have great cognitive prominence. Mental-rotation ability affected spatial perception, with high-spatial people discriminating between different transformations more clearly and low-spatial people attending more to topological relations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ekstrom, R.B., French, J.W., Harman, H.H., Dermen, D.: Kit of Factor-Referenced Cognitive Tests. Educational Testing Service, Princeton (1976)

    Google Scholar 

  • Gans, D.: Transformations and Geometries. Appleton-Century-Crofts, New York (1969)

    Google Scholar 

  • Gersmehl, P.J., Gersmehl, C.A.: Spatial thinking by young children: Neurologic evidence for early development and “educability”. Journal of Geography 106, 181–191 (2007)

    Article  Google Scholar 

  • Girden, E.R.: ANOVA: Repeated Measures (Sage University Paper Series on Quantitative Applications in the Social Sciences, Series No. 07–084). Sage, Newbury Park, CA (1992)

    Google Scholar 

  • Golledge, R.G., Hubert, L.J.: Some comments on non-Euclidean mental maps. Environment and Planning A 14, 107–118 (1982)

    Article  Google Scholar 

  • Golledge, R.G., Marsh, M., Battersby, S.: A conceptual framework for facilitating geospatial thinking. Annals of the Association of American Geographers 98, 285–308 (2008)

    Article  Google Scholar 

  • Hegarty, M.: Components of spatial intelligence. Psychology of Learning and Motivation 52, 265–297 (2010)

    Article  Google Scholar 

  • Hegarty, M., Montello, D.R., Richardson, A.E., Ishikawa, T., Lovelace, K.: Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence 34, 151–176 (2006)

    Article  Google Scholar 

  • Hegarty, M., Richardson, A.E., Montello, D.R., Lovelace, K., Subbiah, I.: Development of a self-report measure of environmental spatial ability. Intelligence 30, 425–447 (2002)

    Article  Google Scholar 

  • Ishikawa, T.: Geospatial thinking and spatial ability: An empirical examination of knowledge and reasoning in geographical science. The Professional Geographer 65, 636–646 (2013a)

    Article  Google Scholar 

  • Ishikawa, T.: Spatial primitives from a cognitive perspective: Sensitivity to changes in various geometric properties. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 1–13. Springer, Heidelberg (2013b)

    Chapter  Google Scholar 

  • Ishikawa, T., Montello, D.R.: Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology 52, 93–129 (2006)

    Article  Google Scholar 

  • Ittelson, W.H.: Environment perception and contemporary perceptual theory. In: Ittelson, W.H. (ed.) Environment and Cognition, pp. 1–19. Seminar Press, New York (1973)

    Google Scholar 

  • Janelle, D.G., Goodchild, M.F.: Location across disciplines: Reflection on the CSISS experience. In: Scholten, H.J., Velde, R., van Manen, N. (eds.) Geospatial Technology and the Role of Location in Science, pp. 15–29. Springer, Dordrecht (2009)

    Chapter  Google Scholar 

  • Keehner, M.M., Tendick, F., Meng, M.V., Anwar, H.P., Hegarty, M., Stoller, M.L., Duh, Q.: Spatial ability, experience, and skill in laparoscopic surgery. American Journal of Surgery 188, 71–75 (2004)

    Article  Google Scholar 

  • Kidder, F.R.: Elementary and middle school children’s comprehension of Euclidean transformations. Journal of Research in Mathematics Education 7, 40–52 (1976)

    Article  Google Scholar 

  • Klippel, A.: Spatial information theory meets spatial thinking: Is topology the Rosetta Stone of spatial cognition? Annals of the Association of American Geographers 102, 1310–1328 (2012)

    Article  Google Scholar 

  • Kozhevnikov, M., Motes, M., Hegarty, M.: Spatial visualization in physics problem solving. Cognitive Science 31, 549–579 (2007)

    Article  Google Scholar 

  • Kozlowski, L.T., Bryant, K.J.: Sense-of-direction, spatial orientation, and cognitive maps. Journal of Experimental Psychology: Human Perception and Performance 3, 590–598 (1977)

    Google Scholar 

  • Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  • Kuhn, W.: Core concepts of spatial information for transdisciplinary research. International Journal of Geographical Information Science 26, 2267–2276 (2012)

    Article  Google Scholar 

  • Lee, J., Bednarz, R.: Components of spatial thinking: Evidence from a spatial thinking ability test. Journal of Geography 111, 15–26 (2012)

    Article  Google Scholar 

  • Levinson, S.C.: Frames of reference and Molyneux’s question: Cross-linguistic evidence. In: Bloom, P., Peterson, M., Nadel, L., Garrett, M. (eds.) Language and Space, pp. 109–169. MIT Press, Cambridge (1996)

    Google Scholar 

  • Liben, L.S., Downs, R.M.: Understanding person-space-map relations: Cartographic and developmental perspectives. Developmental Psychology 29, 739–752 (1993)

    Article  Google Scholar 

  • Mandler, J.M.: Representation. In: Mussen, P.H. (ed.) Handbook of Child Psychology, 4th edn., pp. 420–494. Wiley, New York (1983)

    Google Scholar 

  • Mandler, J.M.: On the spatial foundations of the conceptual system and its enrichment. Cognitive Science 36, 421–451 (2012)

    Article  Google Scholar 

  • Martin, J.L.: A test with selected topological properties of Piaget’s hypothesis concerning the spatial representation of the young child. Journal of Research in Mathematics Education 7, 26–38 (1976)

    Article  Google Scholar 

  • Montello, D.R.: Scale and multiple psychologies of space. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 312–321. Springer, Heidelberg (1993)

    Google Scholar 

  • National Research Council: Learning to Think Spatially. National Academies Press, Washington, DC (2006)

    Google Scholar 

  • Newcombe, N.S.: Increasing math and science learning by improving spatial thinking. American Educator 34(2), 29–43 (2010)

    Google Scholar 

  • Piaget, J., Inhelder, B.: The Child’s Conception of Space (trans. Langdon, F.J., Lunzer, J.L.). Norton, New York (1967) (original work published 1948)

    Google Scholar 

  • Thorndyke, P.W., Hayes-Roth, B.: Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology 14, 560–589 (1982)

    Article  Google Scholar 

  • Tobler, W.: Bidimensional regression. Geographical Analysis 26, 187–212 (1994)

    Article  Google Scholar 

  • Uttal, D.H., Cohen, C.A.: Spatial thinking and STEM education: When, why, and how? Psychology of Learning and Motivation 57, 147–181 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ishikawa, T. (2014). Spatial Concepts: Sensitivity to Changes in Geometric Properties in Environmental and Figural Perception. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds) Spatial Cognition IX. Spatial Cognition 2014. Lecture Notes in Computer Science(), vol 8684. Springer, Cham. https://doi.org/10.1007/978-3-319-11215-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11215-2_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11214-5

  • Online ISBN: 978-3-319-11215-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics