Skip to main content

Dimensions of Uncertainty in Evidential Grid Maps

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8684))

Abstract

We show how a SLAM algorithm based on belief function theory can produce evidential occupancy grid maps that provide a mobile robot with additional information about its environment. While uncertainty in probabilistic grid maps is usually measured by entropy, we show that for evidential grid maps, uncertainty can be expressed in a three-dimensional space and we propose appropriate measures for quantifying uncertainty in these different dimensions. We analyze these measures in a practical mapping example containing typical sources of uncertainty for SLAM. As a result of the evidential representation, the robot is able to distinguish between different sources of uncertainty (e.g., a lack of measurements vs. conflicting measurements) which are indistinguishable in the probabilistic framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, J., Murphy, R., Christopher, S., Casper, J.: Conflict metric as a measure of sensing quality. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2032–2039 (2005)

    Google Scholar 

  2. Cassandra, A.R., Kaelbling, L.P., Kurien, J.A.: Acting under uncertainty: Discrete bayesian models for mobile-robot navigation. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1996, vol. 2, pp. 963–972. IEEE (1996)

    Google Scholar 

  3. Doucet, A., De Freitas, N., Murphy, K., Russell, S.: Rao-Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 176–183 (2000)

    Google Scholar 

  4. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)

    Article  Google Scholar 

  5. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robotics & Automation Magazine 13(2), 99–110 (2006)

    Article  Google Scholar 

  6. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  7. Gambino, F., Ulivi, G., Vendittelli, M.: The transferable belief model in ultrasonic map building. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 601–608. IEEE (1997)

    Google Scholar 

  8. Hartley, R.V.L.: Transmission of information. The Bell Labs Technical Journal 7(3) (1928)

    Google Scholar 

  9. Klir, G.J.: Uncertainty and information: foundations of generalized information theory. Wiley (2005)

    Google Scholar 

  10. Klir, G.J., Smith, R.M.: On measuring uncertainty and uncertainty-based information: Recent developments. Annals of Mathematics and Artificial Intelligence 32(1-4), 5–33 (2001)

    Google Scholar 

  11. Kurdej, M., Moras, J., Cherfaoui, V., Bonnifait, P.: Controlling remanence in evidential grids using geodata for dynamic scene perception. International Journal of Approximate Reasoning 55(1, part 3), 355–375 (2014)

    Google Scholar 

  12. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence, pp. 593–598 (2002)

    Google Scholar 

  13. Moras, J., Cherfaoui, V., Bonnifait, P.: Credibilist occupancy grids for vehicle perception in dynamic environments. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 84–89 (May 2011)

    Google Scholar 

  14. Pagac, D., Nebot, E.M., Durrant-Whyte, H.: An evidential approach to map-building for autonomous vehicles. IEEE Transactions on Robotics and Automation 14(4), 623–629 (1998)

    Article  Google Scholar 

  15. Reineking, T.: Belief Functions: Theory and Algorithms. Ph.D. thesis, University of Bremen (February 2014), http://nbn-resolving.de/urn:nbn:de:gbv:46-00103727-16

  16. Reineking, T., Clemens, J.: Evidential FastSLAM for grid mapping. In: 16th International Conference on Information Fusion (FUSION), pp. 789–796 (July 2013)

    Google Scholar 

  17. Ribo, M., Pinz, A.: A comparison of three uncertainty calculi for building sonar-based occupancy grids. Robotics and Autonomous Systems 35(3-4), 201–209 (2001)

    Article  MATH  Google Scholar 

  18. Sentz, K., Ferson, S.: Combination of evidence in Dempster-Shafer theory. Tech. rep., Sandia National Laboratories (2002)

    Google Scholar 

  19. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  20. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  21. Smets, P.: Belief functions. In: Smets, P., Mamdani, E.H., Dubois, D., Prade, H. (eds.) Non Standard Logics for Automated Reasoning, pp. 253–286. Academic Press, London (1988)

    Google Scholar 

  22. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38, 133–147 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using rao-blackwellized particle filters. In: Robotics: Science and Systems, vol. 2 (2005)

    Google Scholar 

  26. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge (2005)

    Google Scholar 

  27. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)

    Article  MATH  Google Scholar 

  28. Yager, R.R.: Entropy and specificity in a mathematical theory of evidence. International Journal of General System 9(4), 249–260 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yang, T., Aitken, V.: Evidential mapping for mobile robots with range sensors. IEEE Transactions on Instrumentation and Measurement 55(4), 1422–1429 (2006)

    Article  Google Scholar 

  30. Zetzsche, C., Wolter, J., Schill, K.: Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation. Cognitive Processing 9, 283–297 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Reineking, T., Clemens, J. (2014). Dimensions of Uncertainty in Evidential Grid Maps. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds) Spatial Cognition IX. Spatial Cognition 2014. Lecture Notes in Computer Science(), vol 8684. Springer, Cham. https://doi.org/10.1007/978-3-319-11215-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11215-2_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11214-5

  • Online ISBN: 978-3-319-11215-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics