Skip to main content

Spatial Numerosity: A Computational Model Based on a Topological Invariant

  • Conference paper
Spatial Cognition IX (Spatial Cognition 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8684))

Included in the following conference series:

  • 1272 Accesses

Abstract

The estimation of the cardinality of objects in a spatial environment requires a high degree of invariance. Numerous experiments showed the immense abstraction ability of the numerical cognition system in humans and other species. It eliminates almost all structures of the objects and determines the number of objects in a scene. Based on concepts and quantities like connectedness and Gaussian curvature, we provide a general solution to this problem and apply it to the numerosity estimation from visual stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allik, J., Tuulmets, T., Vos, P.G.: Size invariance in visual number discrimination. Psychological Research 53(4), 290–295 (1991)

    Article  Google Scholar 

  2. Alvarez, G.A.: Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Science 15(3), 122–131 (2011)

    Article  Google Scholar 

  3. Brannon, E.M.: The representation of numerical magnitude. Current Opinion in Neurobiology 16(2), 222–229 (2006)

    Article  Google Scholar 

  4. Buzsáki, G., Mizuseki, K.: The log-dynamic brain: how skewed distributions affect network operations. Nature Reviews Neuroscience (2014)

    Google Scholar 

  5. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nature Reviews Neuroscience 13, 51–62 (2012)

    Article  Google Scholar 

  6. Chen, L.: The topological approach to perceptual organization. Visual Cognition 12(4), 553–637 (2005)

    Article  Google Scholar 

  7. Clarke, B.L.: A calculus of individuals based on “connection”. Notre Dame Journal of Formal Logic 22(3), 204–218 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dakin, S.C., Tibber, M.S., Greenwood, J.A., Kingdom, F.A.A., Morgan, M.J.: A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences 108(49), 19552–19557 (2011)

    Article  Google Scholar 

  9. De Hevia, M.-D., Girelli, L., Bricolo, E., Vallar, G.: The representational space of numerical magnitude: Illusions of length. The Quarterly Journal of Experimental Psychology 61(10), 1496–1514 (2008)

    Article  Google Scholar 

  10. de Hevia, M.D., Girelli, L., Vallar, G.: Numbers and space: a cognitive illusion? Experimental Brain Research 168(1-2), 254–264 (2006)

    Article  Google Scholar 

  11. Dehaene, S., Bossini, S., Giraux, P.: The mental representation of parity and number magnitude. Journal of Experimental Psychology: General 122(3), 371 (1993)

    Article  Google Scholar 

  12. Dehaene, S., Changeux, J.P.: Development of elementary numerical abilities: a neuronal model. Journal of Cognitive Neuroscience 5(4), 390–407 (1993)

    Article  Google Scholar 

  13. Dehaene, S., Piazza, M., Pinel, P., Cohen, L.: Three parietal circuits for number processing. Cognitive Neuropsychology 20(3-6), 487–506 (2003)

    Article  Google Scholar 

  14. Dillen, F., Kühnel, W.: Total curvature of complete submanifolds of euclidean space. Tohoku Mathematical Journal 57(2), 171–200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fias, W.: The importance of magnitude information in numerical processing: Evidence from the snarc effect. Mathematical Cognition 2(1), 95–110 (1996)

    Article  Google Scholar 

  16. Gallistel, C.R., Gelman, R.: Preverbal and verbal counting and computation. Cognition 44(1), 43–74 (1992)

    Article  Google Scholar 

  17. Gross, H.J., Pahl, M., Si, A., Zhu, H., Tautz, J., Zhang, S.: Number-based visual generalisation in the honeybee. PloS one, 4(1), e4263 (2009)

    Google Scholar 

  18. He, L., Zhang, J., Zhou, T., Chen, L.: Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin & Review 16(3), 509–517 (2009)

    Article  Google Scholar 

  19. Hegde, J., Felleman, D.: Reappraising the Functional Implications of the Primate Visual Anatomical Hierarchy. The Neuroscientist 13(5), 416–421 (2007)

    Article  Google Scholar 

  20. Kaufman, E.L., Lord, M., Reese, T., Volkmann, J.: The discrimination of visual number. The American Journal of Psychology, 498–525 (1949)

    Google Scholar 

  21. Koenderink, J.J., van Doorn, A.: Shape and shading. The visual neurosciences, 1090–1105 (2003)

    Google Scholar 

  22. Nieder, A., Freedman, D.J., Miller, E.K.: Representation of the quantity of visual items in the primate prefrontal cortex. Science 297(5587), 1708–1711 (2002)

    Article  Google Scholar 

  23. Oliva, A., Torralba, A.: Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  24. Palmer, S., Rock, I.: Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin & Review 1(1), 29–55 (1994)

    Article  Google Scholar 

  25. Piazza, M., Mechelli, A., Butterworth, B., Price, C.J.: Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage 15(2), 435–446 (2002)

    Article  Google Scholar 

  26. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. KR 92, 165–176 (1992)

    Google Scholar 

  27. Ranzini, M., Girelli, L.: Exploiting illusory effects to disclose similarities in numerical and luminance processing. Attention, Perception, & Psychophysics 74(5), 1001–1008 (2012)

    Article  Google Scholar 

  28. Ross, J., Burr, D.C.: Vision senses number directly. Journal of Vision 10(2), 1–8 (2010)

    Article  Google Scholar 

  29. Starkey, P., Spelke, E.S., Gelman, R.: Numerical abstraction by human infants. Cognition 36(2), 97–127 (1990)

    Article  Google Scholar 

  30. Stoianov, I., Zorzi, M.: Emergence of a ’visual number sense’ in hierarchical generative models. Nature Neuroscience 15(2), 194–196 (2012)

    Article  Google Scholar 

  31. Stöttinger, E., Anderson, B., Danckert, J., Frühholz, B., Wood, G.: Spatial biases in number line bisection tasks are due to a cognitive illusion of length. Experimental Brain Research 220(2), 147–152 (2012)

    Article  Google Scholar 

  32. Strauss, M.S., Curtis, L.E.: Infant perception of numerosity. Child Development 52(4), 1146–1152 (1981)

    Article  Google Scholar 

  33. Suzuki, K., Horiba, I., Sugie, N.: Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding 89(1), 1–23 (2003)

    Article  MATH  Google Scholar 

  34. van Nes, F., van Eerde, D.: Spatial structuring and the development of number sense: A case study of young children working with blocks. The Journal of Mathematical Behavior 29(3), 145–159 (2010)

    Article  Google Scholar 

  35. Walsh, V.: A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7(11), 483–488 (2003)

    Article  Google Scholar 

  36. Zetzsche, C., Barth, E.: Fundamental limits of linear filters in the visual processing of two-dimensional signals. Vision Research 30(7), 1111–1117 (1990)

    Article  Google Scholar 

  37. Zetzsche, C., Barth, E.: Image surface predicates and the neural encoding of two-dimensional signal variations. In: Rogowitz, B.E., Allebach, J.P. (eds.) Proceedings SPIE, Human, Vision and Electronic Imaging: Models, Methods, and Applications, vol. 1249, pp. 160–177 (1990)

    Google Scholar 

  38. Zetzsche, C., Gadzicki, K., Kluth, T.: Statistical invariants of spatial form: From local and to numerosity. In: Proc. of the 2nd Interdisciplinary Workshop The Shape of Things, pp. 163–172. CEUR-WS.org (April 2013)

    Google Scholar 

  39. Zetzsche, C., Nuding, U.: Nonlinear and higher-order approaches to the encoding of natural scenes. Network: Computation in Neural Systems 16(2-3), 191–221 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kluth, T., Zetzsche, C. (2014). Spatial Numerosity: A Computational Model Based on a Topological Invariant. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds) Spatial Cognition IX. Spatial Cognition 2014. Lecture Notes in Computer Science(), vol 8684. Springer, Cham. https://doi.org/10.1007/978-3-319-11215-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11215-2_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11214-5

  • Online ISBN: 978-3-319-11215-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics