The Road to Direction

Assessing the Impact of Road Asymmetry on Street Network Small-Worldness
  • Maxime Sainte-Marie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8684)


Small-world networks have proven to be optimal navigational structures, by insuring an adequate balance between local and global network efficiency. In the particular case of road networks, small-world- oriented research has led to widely diverging results, depending on modelling procedures: while traditional, geometric, road-based models fail to observe small-world properties in road networks, a new street-based modelling approach has obtained opposite results, by observing small-world properties for both named-based and angularity-based street graphs. These results are however hampered by the fact that street-based modelling has so far overlooked road asymmetry. Given this, the present research aims at evaluating the impact of road asymmetry on street network “small-worldness”, by comparing symmetric and asymmetric street graphs by means of a structural indicator recently developed in brain network analysis. Results show that taking into account road asymmetry better highlights not only the small-world nature of street networks, but also the exceptional structure of name-based (odonymic) street topologies.


Road Network Random Graph Small World Degree Sequence Volunteer Geographical Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milgram, S.: The small-world problem. Psychology Today 2, 60–67 (1967)Google Scholar
  2. 2.
    Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32(4), 425–443 (1969)CrossRefGoogle Scholar
  3. 3.
    Korte, C., Milgram, S.: Acquaintanceship networks between racial groups: application fo the small world method. Journal of Personality and Social Psychology 15(7), 101–118 (1970)CrossRefGoogle Scholar
  4. 4.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  5. 5.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Physical Review Letters 87(19), 198701 (2001)Google Scholar
  6. 6.
    Kleinberg, J.: Navigation in a small world. Nature 406, 845 (2000)Google Scholar
  7. 7.
    Gorman, S., Kulkarni, R.: Spatial small worlds: new geographic patterns for an information economy. Environment and Planning B: Planning and Design 31(2), 273–296 (2004)CrossRefGoogle Scholar
  8. 8.
    Csanyi, G., Szendroi, B.: Fractal-small-world dichotomy in real-world networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 70, 016122 (2004)Google Scholar
  9. 9.
    Lin, J., Ban, Y.: Complex network topology of transportation systems. Transport Reviews 33(6), 658–685 (2013)CrossRefGoogle Scholar
  10. 10.
    Kansky, K.: Structure of transportation networks: relationships between network geometry and regional characteristics. University of Chicago Press (1963)Google Scholar
  11. 11.
    Chorley, R., Haggett, P.: Models in geography. Methuen and Co., London (1967)Google Scholar
  12. 12.
    Haggett, P., Chorley, R.: Network analysis in geography. Edward Arnold, London (1969)Google Scholar
  13. 13.
    Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal approach. Environment and Planning B: Planning and Design 33, 705–725 (2006)CrossRefGoogle Scholar
  14. 14.
    Cardillo, A., Scellato, S., Latora, V., Porta, S.: Structural properties of planar graphs of urban street patterns. Physical Review E 73(6), 066107 (2006)Google Scholar
  15. 15.
    Crucitti, P., Latora, V., Porta, S.: Centrality in networks of urban streets. Chaos: an Interdisciplinary Journal of Nonlinear Science 16, 015113 (2006)Google Scholar
  16. 16.
    Barthelemy, M.: Spatial networks. Physics Reports 499, 1–101 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lämmer, S., Gehlsen, B., Helbing, D.: Scaling laws in the spatial structure of urban road networks. Physica A: Statistical Mechanics and its Applications 363(1), 89–95 (2006)CrossRefGoogle Scholar
  19. 19.
    Hillier, B., Hanson, J.: The social logic of space. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  20. 20.
    Hillier, B.: Space is the machine: A configurational theory of architecture (1996)Google Scholar
  21. 21.
    Jiang, B.: Volunteered geographical information and computational geography: New perspectives. In: Sui, D., Elwood, S., Goodchild, M. (eds.) Crowdsourcing Geographic Knowledge: Volunteered Geographical Information (VGI) in Theory and Practice, pp. 125–138. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Kalapala, V., Sanwalani, V., Clauset, A., Moore, C.: Scale invariance in road networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 73(2), 1–6 (2006)CrossRefGoogle Scholar
  23. 23.
    Jiang, B., Claramunt, C.: Integration of space syntax into gis: new perspectives for urban morphology. Transactions in GIS 6(3), 295–309 (2002)CrossRefGoogle Scholar
  24. 24.
    Harary, F., Norman, R.: Some properties of line digraphs. Rendiconti del Circolo Matematico di Palermo 6(2), 161–169 (1960)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a dual approach. Physica A: Statistical Mechanics and its Applications 369(2), 853–866 (2006)CrossRefGoogle Scholar
  26. 26.
    Batty, M., Rana, S.: The automatic definition and generation of axial lines and axial maps. Environment and Planning B 31(4), 615–640 (2004)CrossRefGoogle Scholar
  27. 27.
    Jiang, B.: A topological pattern of urban street networks: Universality and peculiarity. Physica A: Statistical Mechanics and its Applications 384(2), 647–655 (2007)CrossRefGoogle Scholar
  28. 28.
    Penn, A.: Space syntax and spatial cognition: Or why the axial line? Environment and Behavior 35(1), 30–65 (2003)CrossRefGoogle Scholar
  29. 29.
    Courtat, T., Gloaguen, C., Douady, S.: Mathematics and morphogenesis of cities: A geometrical approach. Physical Review E 83(3), 036106 (2011)Google Scholar
  30. 30.
    Jiang, B., Claramunt, C.: Topological analysis of urban street networks. Environment and Planning B 31(1), 151–162 (2004)CrossRefGoogle Scholar
  31. 31.
    Jiang, B., Claramunt, C.: A structural approach to the model generalization of an urban street network. Geoinformatica 8(2), 157–171 (2004)CrossRefGoogle Scholar
  32. 32.
    Tomko, M., Winter, S., Claramunt, C.: Experiential hierarchies of streets. Computers, Environment and Urban Systems 32(1), 41–52 (2008)CrossRefGoogle Scholar
  33. 33.
    Wagner, R.: On the metric, topological and functional structures of urban networks. Physica A: Statistical Mechanics and its Applications 387(8-9), 2120–2132 (2008)CrossRefGoogle Scholar
  34. 34.
    Conroy Dalton, R.: The secret is to follow your nose: route path selection and angularity. Environment and Behavior 35, 107–131 (2003)CrossRefGoogle Scholar
  35. 35.
    Dalton, N.: Fractional configurational analysis and a solution to the manhattan problem (2001),
  36. 36.
    Dalton, N., Peponis, J., Dalton, R.: To tame a tiger one hase to know its nature: extending weighted angular integration analysis to the description of gis road-centerline data for large scale urban analysis (2003),
  37. 37.
    Turner, A.: The role of angularity in route choice. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 489–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    Rosvall, M., Trusina, A., Minnhagen, P., Sneppen, K.: Networks and cities: An information perspective. Physical Review Letters 94(2), 28701 (2005)Google Scholar
  39. 39.
    Jiang, B., Liu, C.: Street-based topological representations and analyses for predicting traffic flow in gis. International Journal of Geographical Information Science 23(9), 1119–1137 (2009)CrossRefGoogle Scholar
  40. 40.
    Rodríguez, A., Ruiz, R.: The effect of the asymmetry of road transportation networks on the traveling salesman problem. Computers & Operations Research 39(7), 1566–1576 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Rodríguez, A., Ruiz, R.: A study on the effect of the asymmetry on real capacitated vehicle routing problems. Computers & Operations Research 39(9), 2142–2151 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Hillier, B., Penn, A., Hanson, J., Grajewski, T., Xu, J.: Natural movement-or, configuration and attraction in urban pedestrian movement. Environment and Planning B: Planning and Design 20(1), 29–66 (1993)CrossRefGoogle Scholar
  43. 43.
    Jiang, B.: Ranking spaces for predicting human movement in an urban environment. International Journal of Geographical Information Science 23(7), 823–837 (2009)CrossRefGoogle Scholar
  44. 44.
    Jiang, B., Jia, T.: Agent-based simulation of human movement shaped by the underlying street structure. International Journal of Geographical Information Science 25(1), 51–64 (2011)CrossRefGoogle Scholar
  45. 45.
    Schneider, W., Rezic, S.:, the cycle route planner (March 2013),
  46. 46.
    Haklay, M.: How good is volunteered geographical information? a comparative study of openstreetmap and ordnance survey datasets. Environment and Planning B: Planning and Design 37(4), 682 (2010)Google Scholar
  47. 47.
    Ather, A.: A quality analysis of openstreetmap data. ME Thesis, University College London, London, UK (2009)Google Scholar
  48. 48.
    Pitsis, N., Haklay, M.: Attribute based evaluation of openstreetmap (2010)Google Scholar
  49. 49.
    Davidson, D.: Mental events. In: Davidson, D. (ed.) Essays on Actions and Events, pp. 207–225. Clarendon Press, Oxford (1980)Google Scholar
  50. 50.
    McLaughlin, B., Bennett, K.: Supervenience. Stanford Enclyclopedia of Philosophy (2014)Google Scholar
  51. 51.
    Humphries, M., Gurney, K.: Network ’small-world-ness’: A quantitative method for determining canonical network equivalence. PloS ONE 3(4), 1–10 (2008)CrossRefGoogle Scholar
  52. 52.
    Telesford, Q., Joyce, K., Hayasaka, S., Burdette, J., Laurienti, P.: The ubiquity of small-world networks. Brain Connectivity 1(5), 367–375 (2011)CrossRefGoogle Scholar
  53. 53.
    Kirsh, D.: The intelligent use of space. Artificial Intelligence 73, 31–68 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maxime Sainte-Marie
    • 1
  1. 1.Cognitive Information Analysis LabUniversité du Québec à Montréal (UQAM)MontrealCanada

Personalised recommendations