Skip to main content

The Road to Direction

Assessing the Impact of Road Asymmetry on Street Network Small-Worldness

  • Conference paper
  • 1250 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8684))

Abstract

Small-world networks have proven to be optimal navigational structures, by insuring an adequate balance between local and global network efficiency. In the particular case of road networks, small-world- oriented research has led to widely diverging results, depending on modelling procedures: while traditional, geometric, road-based models fail to observe small-world properties in road networks, a new street-based modelling approach has obtained opposite results, by observing small-world properties for both named-based and angularity-based street graphs. These results are however hampered by the fact that street-based modelling has so far overlooked road asymmetry. Given this, the present research aims at evaluating the impact of road asymmetry on street network “small-worldness”, by comparing symmetric and asymmetric street graphs by means of a structural indicator recently developed in brain network analysis. Results show that taking into account road asymmetry better highlights not only the small-world nature of street networks, but also the exceptional structure of name-based (odonymic) street topologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milgram, S.: The small-world problem. Psychology Today 2, 60–67 (1967)

    Google Scholar 

  2. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32(4), 425–443 (1969)

    Article  Google Scholar 

  3. Korte, C., Milgram, S.: Acquaintanceship networks between racial groups: application fo the small world method. Journal of Personality and Social Psychology 15(7), 101–118 (1970)

    Article  Google Scholar 

  4. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  5. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Physical Review Letters 87(19), 198701 (2001)

    Google Scholar 

  6. Kleinberg, J.: Navigation in a small world. Nature 406, 845 (2000)

    Google Scholar 

  7. Gorman, S., Kulkarni, R.: Spatial small worlds: new geographic patterns for an information economy. Environment and Planning B: Planning and Design 31(2), 273–296 (2004)

    Article  Google Scholar 

  8. Csanyi, G., Szendroi, B.: Fractal-small-world dichotomy in real-world networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 70, 016122 (2004)

    Google Scholar 

  9. Lin, J., Ban, Y.: Complex network topology of transportation systems. Transport Reviews 33(6), 658–685 (2013)

    Article  Google Scholar 

  10. Kansky, K.: Structure of transportation networks: relationships between network geometry and regional characteristics. University of Chicago Press (1963)

    Google Scholar 

  11. Chorley, R., Haggett, P.: Models in geography. Methuen and Co., London (1967)

    Google Scholar 

  12. Haggett, P., Chorley, R.: Network analysis in geography. Edward Arnold, London (1969)

    Google Scholar 

  13. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal approach. Environment and Planning B: Planning and Design 33, 705–725 (2006)

    Article  Google Scholar 

  14. Cardillo, A., Scellato, S., Latora, V., Porta, S.: Structural properties of planar graphs of urban street patterns. Physical Review E 73(6), 066107 (2006)

    Google Scholar 

  15. Crucitti, P., Latora, V., Porta, S.: Centrality in networks of urban streets. Chaos: an Interdisciplinary Journal of Nonlinear Science 16, 015113 (2006)

    Google Scholar 

  16. Barthelemy, M.: Spatial networks. Physics Reports 499, 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  17. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lämmer, S., Gehlsen, B., Helbing, D.: Scaling laws in the spatial structure of urban road networks. Physica A: Statistical Mechanics and its Applications 363(1), 89–95 (2006)

    Article  Google Scholar 

  19. Hillier, B., Hanson, J.: The social logic of space. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  20. Hillier, B.: Space is the machine: A configurational theory of architecture (1996)

    Google Scholar 

  21. Jiang, B.: Volunteered geographical information and computational geography: New perspectives. In: Sui, D., Elwood, S., Goodchild, M. (eds.) Crowdsourcing Geographic Knowledge: Volunteered Geographical Information (VGI) in Theory and Practice, pp. 125–138. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Kalapala, V., Sanwalani, V., Clauset, A., Moore, C.: Scale invariance in road networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 73(2), 1–6 (2006)

    Article  Google Scholar 

  23. Jiang, B., Claramunt, C.: Integration of space syntax into gis: new perspectives for urban morphology. Transactions in GIS 6(3), 295–309 (2002)

    Article  Google Scholar 

  24. Harary, F., Norman, R.: Some properties of line digraphs. Rendiconti del Circolo Matematico di Palermo 6(2), 161–169 (1960)

    Article  MathSciNet  Google Scholar 

  25. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a dual approach. Physica A: Statistical Mechanics and its Applications 369(2), 853–866 (2006)

    Article  Google Scholar 

  26. Batty, M., Rana, S.: The automatic definition and generation of axial lines and axial maps. Environment and Planning B 31(4), 615–640 (2004)

    Article  Google Scholar 

  27. Jiang, B.: A topological pattern of urban street networks: Universality and peculiarity. Physica A: Statistical Mechanics and its Applications 384(2), 647–655 (2007)

    Article  Google Scholar 

  28. Penn, A.: Space syntax and spatial cognition: Or why the axial line? Environment and Behavior 35(1), 30–65 (2003)

    Article  Google Scholar 

  29. Courtat, T., Gloaguen, C., Douady, S.: Mathematics and morphogenesis of cities: A geometrical approach. Physical Review E 83(3), 036106 (2011)

    Google Scholar 

  30. Jiang, B., Claramunt, C.: Topological analysis of urban street networks. Environment and Planning B 31(1), 151–162 (2004)

    Article  Google Scholar 

  31. Jiang, B., Claramunt, C.: A structural approach to the model generalization of an urban street network. Geoinformatica 8(2), 157–171 (2004)

    Article  Google Scholar 

  32. Tomko, M., Winter, S., Claramunt, C.: Experiential hierarchies of streets. Computers, Environment and Urban Systems 32(1), 41–52 (2008)

    Article  Google Scholar 

  33. Wagner, R.: On the metric, topological and functional structures of urban networks. Physica A: Statistical Mechanics and its Applications 387(8-9), 2120–2132 (2008)

    Article  Google Scholar 

  34. Conroy Dalton, R.: The secret is to follow your nose: route path selection and angularity. Environment and Behavior 35, 107–131 (2003)

    Article  Google Scholar 

  35. Dalton, N.: Fractional configurational analysis and a solution to the manhattan problem (2001), http://undertow.arch.gatech.edu/homepages/3sss

  36. Dalton, N., Peponis, J., Dalton, R.: To tame a tiger one hase to know its nature: extending weighted angular integration analysis to the description of gis road-centerline data for large scale urban analysis (2003), http://www.spacesyntax.net/SSS4

  37. Turner, A.: The role of angularity in route choice. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 489–504. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  38. Rosvall, M., Trusina, A., Minnhagen, P., Sneppen, K.: Networks and cities: An information perspective. Physical Review Letters 94(2), 28701 (2005)

    Google Scholar 

  39. Jiang, B., Liu, C.: Street-based topological representations and analyses for predicting traffic flow in gis. International Journal of Geographical Information Science 23(9), 1119–1137 (2009)

    Article  Google Scholar 

  40. Rodríguez, A., Ruiz, R.: The effect of the asymmetry of road transportation networks on the traveling salesman problem. Computers & Operations Research 39(7), 1566–1576 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rodríguez, A., Ruiz, R.: A study on the effect of the asymmetry on real capacitated vehicle routing problems. Computers & Operations Research 39(9), 2142–2151 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hillier, B., Penn, A., Hanson, J., Grajewski, T., Xu, J.: Natural movement-or, configuration and attraction in urban pedestrian movement. Environment and Planning B: Planning and Design 20(1), 29–66 (1993)

    Article  Google Scholar 

  43. Jiang, B.: Ranking spaces for predicting human movement in an urban environment. International Journal of Geographical Information Science 23(7), 823–837 (2009)

    Article  Google Scholar 

  44. Jiang, B., Jia, T.: Agent-based simulation of human movement shaped by the underlying street structure. International Journal of Geographical Information Science 25(1), 51–64 (2011)

    Article  Google Scholar 

  45. Schneider, W., Rezic, S.: Bbbike.org, the cycle route planner (March 2013), http://goo.gl/CQRziY

  46. Haklay, M.: How good is volunteered geographical information? a comparative study of openstreetmap and ordnance survey datasets. Environment and Planning B: Planning and Design 37(4), 682 (2010)

    Google Scholar 

  47. Ather, A.: A quality analysis of openstreetmap data. ME Thesis, University College London, London, UK (2009)

    Google Scholar 

  48. Pitsis, N., Haklay, M.: Attribute based evaluation of openstreetmap (2010)

    Google Scholar 

  49. Davidson, D.: Mental events. In: Davidson, D. (ed.) Essays on Actions and Events, pp. 207–225. Clarendon Press, Oxford (1980)

    Google Scholar 

  50. McLaughlin, B., Bennett, K.: Supervenience. Stanford Enclyclopedia of Philosophy (2014)

    Google Scholar 

  51. Humphries, M., Gurney, K.: Network ’small-world-ness’: A quantitative method for determining canonical network equivalence. PloS ONE 3(4), 1–10 (2008)

    Article  Google Scholar 

  52. Telesford, Q., Joyce, K., Hayasaka, S., Burdette, J., Laurienti, P.: The ubiquity of small-world networks. Brain Connectivity 1(5), 367–375 (2011)

    Article  Google Scholar 

  53. Kirsh, D.: The intelligent use of space. Artificial Intelligence 73, 31–68 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sainte-Marie, M. (2014). The Road to Direction. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds) Spatial Cognition IX. Spatial Cognition 2014. Lecture Notes in Computer Science(), vol 8684. Springer, Cham. https://doi.org/10.1007/978-3-319-11215-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11215-2_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11214-5

  • Online ISBN: 978-3-319-11215-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics