Skip to main content

Bayesian Cue Interaction in Human Spatial Navigation

  • Conference paper
Spatial Cognition IX (Spatial Cognition 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8684))

Included in the following conference series:

Abstract

We examined the manner in which people integrated visual cues and self-motion cues during spatial navigation when the two cues varied in reliability independently. Results showed that when responses were pooled across reliability levels of the manipulated cue, people integrated cues optimally or nearly optimally in a Bayesian manner. However, when responses were analyzed within reliability levels, navigation behavior often deviated from Bayesian optimal integration. These results suggest that when experiencing spatial cues changing in reliability, navigators combine cues in a way consistent with Bayesian integration theory overall, but at the cost of being non-optimal at the individual reliability levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, K., Newcombe, N.S.: Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review 12(1), 1–23 (2005)

    Article  Google Scholar 

  2. Lew, A.R.: Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychol. Bull. 137(3), 484–507 (2011), doi:10.1037/a0022315

    Article  Google Scholar 

  3. Twyman, A.D., Newcombe, N.S.: Five reasons to doubt the existence of a geometric module. Cogn. Sci. 34(7), 1315–1356 (2010), doi:10.1111/j.1551-6709.2009.01081.x

    Article  Google Scholar 

  4. Save, E., Poucet, B.: Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behavioural Brain Research 109(2), 195–206 (2000), doi:10.1016/s0166-4328(99)00173-4

    Article  Google Scholar 

  5. Chamizo, V.D., Manteiga, R.D., Rodrigo, T., Mackintosh, N.J.: Competition between landmarks in spatial learning: The role of proximity to the goal. Behav. Processes 71(1), 59–65 (2006), doi:10.1016/j.beproc.2005.11.003

    Article  Google Scholar 

  6. Goodyear, A.J., Kamil, A.C.: Clark’s nutcrackers (Nucifraga columbiana) and the effects of goal–landmark distance on overshadowing. J. Comp. Psychol. 118(3), 258–264 (2004), doi:10.1037/0735-7036.118.3.258

    Article  Google Scholar 

  7. Roberts, A.D., Pearce, J.M.: Blocking in the Morris swimming pool. J. Exp. Psychol. Anim. Behav. Process. 25(2), 225–235 (1999)

    Article  Google Scholar 

  8. Spetch, M.L.: Overshadowing in landmark learning: touch-screen studies with pigeons and humans. J. Exp. Psychol. Anim. Behav. Process. 21(2), 166–181 (1995)

    Article  Google Scholar 

  9. Wilson, P.N., Alexander, T.: Blocking of spatial learning between enclosure geometry and a local landmark. Journal of Experimental Psychology-Learning Memory and Cognition 34(6), 1369–1376 (2008), doi:10.1037/a0013011

    Article  Google Scholar 

  10. Cheng, K.: A purely geometric module in the rat’s spatial representation. Cognition 23(2), 149–178 (1986)

    Article  Google Scholar 

  11. Doeller, C.F., Burgess, N.: Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proc. Natl Acad. Sci. U S A 105(15), 5909–5914 (2008), doi:10.1073/pnas.0711433105

    Article  Google Scholar 

  12. Kearns, M.J., Warren, W.H., Duchon, A.P., Tarr, M.J.: Path integration from optic flow and body senses in a homing task. Perception 31(3), 349–374 (2002), doi:10.1068/p3311

    Article  Google Scholar 

  13. Kelly, J.W., McNamara, T.P., Bodenheimer, B., Carr, T.H., Rieser, J.J.: The shape of human navigation: How environmental geometry is used in maintenance of spatial orientation. Cognition 109(2), 281–286 (2008), doi:10.1016/j.cognition.2008.09.001

    Article  Google Scholar 

  14. Nico, D., Israel, I., Berthoz, A.: Interaction of visual and idiothetic information in a path completion task. Experimental Brain Research 146(3), 379–382 (2002), doi:10.1007/s00221-002-1184-8

    Article  Google Scholar 

  15. Chittka, L., Geiger, K.: Honeybee long-distance orientation in a controlled environment. Ethology 99(2), 117–126 (1995)

    Google Scholar 

  16. Cheng, K., Shettleworth, S.J., Huttenlocher, J., Rieser, J.J.: Bayesian integration of spatial information. Psychol. Bull. 133(4), 625–637 (2007), doi:10.1037/0033-2909.133.4.625

    Article  Google Scholar 

  17. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002), doi:10.1038/415429a

    Article  Google Scholar 

  18. Nardini, M., Bedford, R., Mareschal, D.: Fusion of visual cues is not mandatory in children. Proc. Natl Acad. Sci. U S A 107(39), 17041–17046 (2010), doi:10.1073/pnas.1001699107

    Article  Google Scholar 

  19. Parise, C.V., Spence, C., Ernst, M.O.: When correlation implies causation in multisensory integration. Current Biology 22(1), 46–49 (2012)

    Article  Google Scholar 

  20. Nardini, M., Jones, P., Bedford, R., Braddick, O.: Development of cue integration in human navigation. Curr. Biol. 18(9), 689–693 (2008), doi:10.1016/j.cub.2008.04.021

    Article  Google Scholar 

  21. Loomis, J.M., Klatzky, R.L., Golledge, R.G., Cicinelli, J.G., Pellegrino, J.W., Fry, P.A.: Nonvisual navigation by blind and sighted: assessment of path integration ability. Journal of Experimental Psychology: General 122(1), 73 (1993)

    Article  Google Scholar 

  22. Cheng, K., Spetch, M.L.: Stimulus control in the use of landmarks by pigeons in a touch-screen task. J. Exp. Anal. Behav. 63(2), 187–201 (1995)

    Article  Google Scholar 

  23. Kelly, J.W., McNamara, T.P., Bodenheimer, B., Carr, T.H., Rieser, J.J.: Individual differences in using geometric and featural cues to maintain spatial orientation: Cue quantity and cue ambiguity are more important than cue type. Psychon. Bull. Rev. 16(1), 176–181 (2009), doi:10.3758/PBR.16.1.176

    Article  Google Scholar 

  24. Loomis, J.M., Klatzky, R.L., Golledge, R.G., Philbeck, J.W.: Human navigation by path integration. In: Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, pp. 125–151 (1999)

    Google Scholar 

  25. Rouder, J.N., Speckman, P.L., Sun, D., Morey, R.D., Iverson, G.: Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review 16(2), 225–237 (2009)

    Article  Google Scholar 

  26. Chen, X.: Bayesian cue interaction in human spatial navigation: mathematical demonstration, simulations, and relationship between cue salience and cue reliability. Technical Report, Department of Psychology, Vanderbilt University (2014)

    Google Scholar 

  27. Zhao, M., Warren, W.H.: Path integration and visual landmarks: Optimal combination or multiple systems? In: Annual Meeting of Psychonomics Society, St. Louis, MO (November 2010)

    Google Scholar 

  28. Bruggeman, H., Zosh, W., Warren, W.H.: Optic flow drives human visuo-locomotor adaptation. Current Biology 17(23), 2035–2040 (2007)

    Article  Google Scholar 

  29. Chamizo, V., Rodrigo, T., Peris, J., Grau, M.: The influence of landmark salience in a navigation task: An additive effect between its components. Journal of Experimental Psychology: Animal Behavior Processes 32(3), 339 (2006)

    Google Scholar 

  30. Gouteux, S., Thinus-Blanc, C., Vauclair, J.: Rhesus monkeys use geometric and nongeometric information during a reorientation task. Journal of Experimental Psychology: General 130(3), 505 (2001)

    Article  Google Scholar 

  31. Learmonth, A.E., Nadel, L., Newcombe, N.S.: Children’s use of landmarks: Implications for modularity theory. Psychol. Sci. 13(4), 337–341 (2002)

    Article  Google Scholar 

  32. Hillis, J.M., Ernst, M.O., Banks, M.S., Landy, M.S.: Combining sensory information: mandatory fusion within, but not between, senses. Science 298(5598), 1627–1630 (2002), doi:10.1126/science.1075396

    Article  Google Scholar 

  33. Mou, W., Spetch, M.L.: Object location memory: Integration and competition between multiple context objects but not between observers’ body and context objects. Cognition 126(2), 181–197 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, X., McNamara, T.P. (2014). Bayesian Cue Interaction in Human Spatial Navigation. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds) Spatial Cognition IX. Spatial Cognition 2014. Lecture Notes in Computer Science(), vol 8684. Springer, Cham. https://doi.org/10.1007/978-3-319-11215-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11215-2_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11214-5

  • Online ISBN: 978-3-319-11215-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics