Advertisement

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin

  • Tim Ruffing
  • Pedro Moreno-Sanchez
  • Aniket Kate
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8713)

Abstract

The decentralized currency network Bitcoin is emerging as a potential new way of performing financial transactions across the globe. Its use of pseudonyms towards protecting users’ privacy has been an attractive feature to many of its adopters. Nevertheless, due to the inherent public nature of the Bitcoin transaction ledger, users’ privacy is severely restricted to linkable anonymity, and a few transaction deanonymization attacks have been reported thus far.

In this paper we propose CoinShuffle, a completely decentralized Bitcoin mixing protocol that allows users to utilize Bitcoin in a truly anonymous manner. CoinShuffle is inspired by the accountable anonymous group communication protocol Dissent and enjoys several advantages over its predecessor Bitcoin mixing protocols. It does not require any (trusted, accountable or untrusted) third party and it is perfectly compatible with the current Bitcoin system. CoinShuffle introduces only a small communication overhead for its users, while completely avoiding additional anonymization fees and minimalizing the computation and communication overhead for the rest of the Bitcoin system.

Keywords

Bitcoin decentralized crypto-currencies coin mixing anonymity transaction linkability mix networks 

References

  1. 1.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical report (2008), https://bitcoin.org/bitcoin.pdf
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make Bitcoin a better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among men with no names. In: IMC 2013, pp. 127–140. ACM (2013)Google Scholar
  8. 8.
    Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: Extracting intelligence from the Bitcoin network. In: FC 2014. Springer (2014)Google Scholar
  9. 9.
    Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in Bitcoin using P2P network traffic. In: FC 2014. Springer (2014)Google Scholar
  10. 10.
  11. 11.
  12. 12.
  13. 13.
    Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: Anonymity for Bitcoin with accountable mixes. In: FC 2014. Springer (2014)Google Scholar
  14. 14.
    Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed e-cash from Bitcoin. In: S&P 2013, pp. 397–411. IEEE Press (2013)Google Scholar
  15. 15.
    Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio Coin: Building Zerocoin from a succinct pairing-based proof system. In: PETShop 2013, pp. 27–30. ACM (2013)Google Scholar
  16. 16.
    Garman, C., Green, M., Miers, I., Rubin, A.D.: Rational Zero: Economic security for Zerocoin with everlasting anonymity. In: 1st Workshop on Bitcoin Research (2014), https://fc14.ifca.ai/bitcoin/papers/bitcoin14_submission_12.pdf
  17. 17.
    Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decentralized anonymous payments from Bitcoin. In: S&P 2014. IEEE Press (2014)Google Scholar
  18. 18.
    Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. Post on Bitcoin Forum (August 2013), https://bitcointalk.org/index.php?topic=279249
  19. 19.
    Qkos Services Ltd.: Shared Coin, https://sharedcoin.com
  20. 20.
    Yang, E.Z.: Secure multiparty Bitcoin anonymization. Blog posting (2012), http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/
  21. 21.
    Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications. IACR ePrint Cryptology Archive 2011/122, https://eprint.iacr.org/2011/122
  22. 22.
    Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically efficient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Rosenfeld, M.: Using mixing transactions to improve anonymity. Post on Bitcoin Forum (December 2011), https://bitcointalk.org/index.php?topic=54266
  24. 24.
    Murphant (pseudonym). Post on Bitcoin Forum (August 2013), https://bitcointalk.org/index.php?topic=279249.msg3057216#msg3057216
  25. 25.
    Maxwell, G.: Post on Bitcoin Forum (September 2013), https://bitcointalk.org/index.php?topic=279249.msg3013970#msg3013970
  26. 26.
    Corrigan-Gibbs, H., Ford, B.: Dissent: Accountable anonymous group messaging. In: CCS 2010, pp. 340–350. ACM (2010)Google Scholar
  27. 27.
    Bitcoin project: Bitcoin developer documentation, https://bitcoin.org/en/developer-documentation
  28. 28.
    Möser, M., Böhme, R., Breuker, D.: An inquiry into money laundering tools in the Bitcoin ecosystem. In: ECRIME 2013. IEEE Press (2013)Google Scholar
  29. 29.
    Duffield, E., Hagan, K.: Darkcoin: Peer-to-peer crypto currency with anonymous blockchain transactions and an improved proof-of-work system. Technical report (March 2014), http://www.darkcoin.io/downloads/DarkcoinWhitepaper.pdf
  30. 30.
    Buterin, V., Malahov, J., Wilson, C., Hintjens, P., Taaki, A., et al.: Dark Wallet, https://darkwallet.unsystem.net
  31. 31.
    van der Laan, W.J.: Implement coinjoin in wallet. GitHub Issue #3226 of official Bitcoin repository, https://github.com/bitcoin/bitcoin/issues/3226
  32. 32.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In: USENIX Security 2004, pp. 21–37. USENIX Assoc. (2004)Google Scholar
  33. 33.
    Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–90 (1981)CrossRefGoogle Scholar
  34. 34.
    Syta, E., Johnson, A., Corrigan-Gibbs, H., Weng, S.C., Wolinsky, D., Ford, B.: Security analysis of accountable anonymous group communication in Dissent. ACM Transactions on Information and System Security (TISSEC) (to appear)Google Scholar
  35. 35.
    Brickell, J., Shmatikov, V.: Efficient anonymity-preserving data collection. In: SIGKDD 2006, pp. 76–85. ACM (2006)Google Scholar
  36. 36.
    Transaction fees. Bitcoin Wiki, https://en.bitcoin.it/w/index.php?title=Transaction_fees&oldid=45501 (revision as of March 28, 2014)
  37. 37.
    Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Practical accountability for distributed systems. In: SOSP 2007, pp. 175–188. ACM (2007)Google Scholar
  38. 38.
    Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bitcoin. In: CCS 2012, pp. 906–917. ACM (2012)Google Scholar
  39. 39.
    Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical decentralized coin mixing for Bitcoin. Full version of this paper and prototype implementation, http://crypsys.mmci.uni-saarland.de/projects/CoinShuffle
  40. 40.
    Certicom Research: Sec 1: Elliptic curve cryptography, http://www.secg.org/download/aid-780/sec1-v2.pdf
  41. 41.
    White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed systems and networks. In: OSDI 2002, pp. 255–270. USENIX (December 2002)Google Scholar
  42. 42.
  43. 43.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tim Ruffing
    • 1
  • Pedro Moreno-Sanchez
    • 1
  • Aniket Kate
    • 1
  1. 1.MMCISaarland UniversityGermany

Personalised recommendations