Skip to main content

A More Compact Translation of Pseudo-Boolean Constraints into CNF Such That Generalized Arc Consistency Is Maintained

  • Conference paper
KI 2014: Advances in Artificial Intelligence (KI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8736))

Abstract

In this paper we answer the open question for the existence of a more compact encoding from Pseudo-Boolean constraints into CNF that maintains generalized arc consistency by unit propagation, formalized by Bailleux et al. in [21]. In contrast to other encodings our approach is defined in an abstract way and we present a concrete instantiation, resulting in a space complexity of \(\mathcal{O}(n^2 \text{\,log}^2(n)\text{\,log}(w_{\mathsf{max}}))\) clauses in contrast to \(\mathcal{O}(n^3 \text{\,log}(n)\text{\,log}(w_{\mathsf{max}}))\) clauses generated by the previously best known encoding that maintains generalized arc consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: BDDs for pseudo-Boolean constraints – revisited. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 61–75. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Mayer-Eichberger, V.: A new look at BDDs for pseudo-Boolean constraints. JAIR 45, 443–480 (2012)

    MATH  Google Scholar 

  3. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann (ed.) [15], pp. 167–180

    Google Scholar 

  4. Belov, A., Janota, M., Lynce, I., Marques-Silva, J.: On computing minimal equivalent subformulas. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 158–174. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): IOS Press, Amsterdam (2009)

    Google Scholar 

  6. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. DAM 123(1-3), 155–225 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. CACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. CACM 5(7), 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT 2, 1–26 (2006)

    MATH  Google Scholar 

  12. Hölldobler, S., Manthey, N., Saptawijaya, A.: Improving resource-unaware SAT solvers. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 519–534. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Kautz, H., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) ECAI 1992, pp. 359–363. John Wiley & Sons, Inc., New York (1992)

    Google Scholar 

  14. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: AAAI 1996, pp. 1194–1201. MIT Press (1996)

    Google Scholar 

  15. Kullmann, O. (ed.): SAT 2009. LNCS, vol. 5584. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  16. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. JAR 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Manthey, N., Steinke, P.: npSolver – A SAT based solver for optimization problems. In: POS 2012 (2012)

    Google Scholar 

  19. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: DAC 2001, pp. 530–535. ACM, New York (2001)

    Google Scholar 

  20. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Bloem, R., Sharygina, N. (eds.) FMCAD 2010, pp. 121–128 (2010)

    Google Scholar 

  21. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-Boolean constraints into CNF. In: Kullmann (ed.) [15], pp. 181–194

    Google Scholar 

  22. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3), 293–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming. Elsevier Science Inc., New York (2006)

    MATH  Google Scholar 

  24. Roussel, O., Manquinho, V.: Pseudo-Boolean and cardinality constraints. In: Biere, et al. (eds.) [5]

    Google Scholar 

  25. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automation of Reasoning. Symbolic Computation, pp. 466–483. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Manthey, N., Philipp, T., Steinke, P. (2014). A More Compact Translation of Pseudo-Boolean Constraints into CNF Such That Generalized Arc Consistency Is Maintained. In: Lutz, C., Thielscher, M. (eds) KI 2014: Advances in Artificial Intelligence. KI 2014. Lecture Notes in Computer Science(), vol 8736. Springer, Cham. https://doi.org/10.1007/978-3-319-11206-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11206-0_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11205-3

  • Online ISBN: 978-3-319-11206-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics