Skip to main content

Evidential Object Recognition Based on Information Gain Maximization

  • Conference paper
Belief Functions: Theory and Applications (BELIEF 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8764))

Included in the following conference series:

Abstract

This paper presents an object recognition approach based on belief function inference and information gain maximization. A common problem for probabilistic object recognition models is that the parameters of the probability distributions cannot be accurately estimated using the available training data due to high dimensionality. We therefore use belief functions in order to make the reliability of the evidence provided by the training data an explicit part of the recognition model. In contrast to typical classification approaches, we consider recognition as a sequential information-gathering process where a system with dynamic beliefs actively seeks to acquire new evidence. This acquisition process is based on the principle of maximum expected information gain and enables the system to perform optimal actions for reducing uncertainty as quickly as possible. We evaluate our system on a standard object recognition dataset where we investigate the effect of the amount of training data on classification performance by comparing different methods for constructing belief functions from data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aregui, A., Denœux, T.: Constructing consonant belief functions from sample data using confidence sets of pignistic probabilities. International Journal of Approximate Reasoning 49(3), 575–594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Denœux, T.: Constructing belief functions from sample data using multinomial confidence regions. International Journal of Approximate Reasoning 42(3), 228–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Tech. rep., California Institute of Technology (2007)

    Google Scholar 

  4. Hoiem, D., Efros, A.A., Hebert, M.: Putting objects in perspective. International Journal of Computer Vision 80(1), 3–15 (2008)

    Article  Google Scholar 

  5. Klir, G.J.: Uncertainty and information: foundations of generalized information theory. Wiley (2005)

    Google Scholar 

  6. Noë, A.: Action in Perception. MIT Press (2004)

    Google Scholar 

  7. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  8. Reineking, T.: Particle filtering in the Dempster-Shafer theory. International Journal of Approximate Reasoning 52(8), 1124–1135 (2011)

    Article  MathSciNet  Google Scholar 

  9. Reineking, T.: Belief Functions: Theory and Algorithms. Ph.D. thesis, University of Bremen (February 2014)

    Google Scholar 

  10. Schill, K., Umkehrer, E., Beinlich, S., Krieger, G., Zetzsche, C.: Scene analysis with saccadic eye movements: Top-down and bottom-up modeling. Journal of Electronic Imaging 10(1), 152–160 (2001)

    Article  Google Scholar 

  11. Schill, K., Zetzsche, C., Hois, J.: A belief-based architecture for scene analysis: From sensorimotor features to knowledge and ontology. Fuzzy Sets and Systems 160(10), 1507–1516 (2009)

    Article  MathSciNet  Google Scholar 

  12. Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Smets, P.: The application of the transferable belief model to diagnostic problems. International Journal of Intelligent Systems 13, 127–157 (1998)

    Article  MATH  Google Scholar 

  14. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38, 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  16. Troffaes, M.C.: Decision making under uncertainty using imprecise probabilities. International Journal of Approximate Reasoning 45(1), 17–29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Walley, P.: Inferences from multinomial data: learning about a bag of marbles. Journal of the Royal Statistical Society 58(1), 3–57 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional neural networks. arXiv preprint arXiv:1311.2901 (2013)

    Google Scholar 

  19. Zetzsche, C., Wolter, J., Schill, K.: Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation. Cognitive Processing 9, 283–297 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Reineking, T., Schill, K. (2014). Evidential Object Recognition Based on Information Gain Maximization. In: Cuzzolin, F. (eds) Belief Functions: Theory and Applications. BELIEF 2014. Lecture Notes in Computer Science(), vol 8764. Springer, Cham. https://doi.org/10.1007/978-3-319-11191-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11191-9_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11190-2

  • Online ISBN: 978-3-319-11191-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics