Advertisement

The EP from HD Kane Type Semiconductors

Chapter
Part of the Springer Tracts in Modern Physics book series (STMP, volume 262)

Abstract

With the advent of nano-photonics, there has been a considerable interest in studying the optical processes in semiconductors and their nanostructures. It appears from the literature, that the investigations have been carried out on the assumption that the carrier energy spectra are invariant quantities in the presence of intense light waves , which is not fundamentally true. In this chapter, we study the EP from HD III-V, ternary and quaternary materials in the presence of light waves on the basis of newly formulated dispersion laws. The EP of different HD optoelectronic material changes with light intensity and wavelength in different manners which are totally band structured independent. This chapter contains 6 open research problems.

Keywords

Light Wave Band Model Invariant Quantity Electron Energy Spectrum Debye Screening Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.K. Basu, Theory of Optical Process in Semiconductors, Bulk and Microstructures (Oxford University Press, Oxford, 1997)Google Scholar
  2. 2.
    K.P. Ghatak, S. Bhattacharya, S. Bhowmik, R. Benedictus, S. Chowdhury, J. Appl. Phys. 103, 094314 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    K.P. Ghatak, S. Bhattacharya, J. Appl. Phys. 102, 073704 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    K.P. Ghatak, S. Bhattacharya, S.K. Biswas, A. De, A.K. Dasgupta, Phys. Scr. 75, 820 (2007)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    P.K. Bose, N. Paitya, S. Bhattacharya, D. De, S. Saha, K.M. Chatterjee, S. Pahari, K.P. Ghatak, Quantum Matter 1, 89 (2012)CrossRefGoogle Scholar
  6. 6.
    K.P. Ghatak, S. Bhattacharya, A. Mondal, S. Debbarma, P. Ghorai, A. Bhattacharjee, Quantum Matter 2, 25 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Bhattacharya, D. De, S. Ghosh, J.P. Bannerje, M. Mitra, B. Nag, S. Saha, S.K. Bishwas, M. Paul, J. Comput. Theo. Nanosci. 7, 1066 (2010)CrossRefGoogle Scholar
  8. 8.
    K.P. Ghatak, S. Bhattacharya, S. Pahari, S.N. Mitra, P.K. Bose, J. Phys. Chem. Solids 70, 122 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S. Bhattacharya, D. De, R. Sarkar, S. Pahari, A. De, A.K. Dasgupta, S.N. Biswas, K.P. Ghatak, J. Comput. Theo. Nanosci. 5, 1345 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Mukherjee, D. De, D. Mukherjee, S. Bhattacharya, A. Sinha, K.P. Ghatak, Phys. B 393, 347 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    K. Seeger, Semiconductor Physics, 7th edn. (Springer, Heidelberg, 2006)Google Scholar
  12. 12.
    B.R. Nag, Physics of Quantum Well Devices (Kluwer Academic Publishers, The Netherlands, 2000)Google Scholar
  13. 13.
    R.K. Pathria, Statistical Mechanics, 2nd edn. (Butterworth-Heinmann, Oxford, 1996)zbMATHGoogle Scholar
  14. 14.
    S. Bhatttacharya, K.P. Ghatak, Fowler-Nordheim Field Emission, vol. 170, Springer Series in Solid-State Sciences (Springer, Germany, 2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations