The EP from Heavily Doped (HD) Quantized Superlattices

Part of the Springer Tracts in Modern Physics book series (STMP, volume 262)


With the advent of nano-photonics, there has been a considerable interest in studying the optical processes in semiconductors and their nanostructures. It appears from the literature, that the investigations have been carried out on the assumption that the carrier energy spectra are invariant quantities in the presence of intense light waves , which is not fundamentally true. In this chapter, we study the EP from HD III-V, ternary and quaternary materials in the presence of light waves on the basis of newly formulated dispersion laws. The EP of different HD optoelectronic material changes with light intensity and wavelength in different manners which are totally band structured independent. This chapter contains 6 open research problems.


Heavily Doped (HD) Inverse Quantizing Magnetic Field Electron densityElectron Density Super Lattice Vector Dispersion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Mukherjee, S.N. Mitra, P.K. Bose, A.R. Ghatak, A. Neoigi, J.P. Banerjee, A. Sinha, M. Pal, S. Bhattacharya, K.P. Ghatak, J. Comput. Theor. Nanosci. 4, 550 (2007)Google Scholar
  2. 2.
    N.G. Anderson, W.D. Laidig, R.M. Kolbas, Y.C. Lo, J. Appl. Phys. 60, 2361 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    N. Paitya, K.P. Ghatak, J. Adv. Phys. 1, 161 (2012)CrossRefGoogle Scholar
  4. 4.
    N. Paitya, S. Bhattacharya, D. De, K.P. Ghatak, Adv. Sci. Engg. Medi. 4, 96 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Bhattacharya, D. Dkdhjskj, S.M. Adhikari, K.P. Ghatak, Superlatt. Microst. 51, 203 (2012)CrossRefGoogle Scholar
  6. 6.
    D. De, S. Bhattacharya, S.M. Adhikari, A. Kumar, P.K. Bose, K.P. Ghatak, Beilstein J. Nanotech. 2, 339 (2012)CrossRefGoogle Scholar
  7. 7.
    D. De, A. Kumar, S.M. Adhikari, S. Pahari, N. Islam, P. Banerjee, S.K. Biswas, S. Bhattacharya, K.P. Ghatak, Superlatt. Microstruct. 47, 377 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    S. Pahari, S. Bhattacharya, S. Roy, A. Saha, D. De, K. P. Ghatak, Superlatt. Microstruct. 46, (760) (2009)Google Scholar
  9. 9.
    S. Pahari, S. Bhattacharya, K. P. Ghatak J. Comput. Theory. Nanosci. 6, (2088) (2009)Google Scholar
  10. 10.
    S.K. Biswas, A.R. Ghatak, A. Neogi, A. Sharma, S. Bhattacharya, K.P. Ghatak, Phys. E: Low-dimen. Sys. and Nanostruct. 36, 163 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    L.J. Singh, S. Choudhury, D. Baruah, S.K. Biswas, S. Pahari, K.P. Ghatak, Phys. B: Conden. Matter 368, 188 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    S. Chowdhary, L.J. Singh, K.P. Ghatak, Phys. B: Conden. Matter 365, 5 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    L.J. Singh, S. Choudhary, A. Mallik, K.P. Ghatak, J. Comput. Theo. Nanosci. 2, 287 (2005)CrossRefGoogle Scholar
  14. 14.
    K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, SPIE Proc. Ser. 4746, 1292 (2002)Google Scholar
  15. 15.
    K.P. Ghatak, S. Dutta, D.K. Basu, B. Nag, Il Nuovo Cimento. D 20, 227 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    K.P. Ghatak, D.K. Basu, B. Nag, J. Phys. Chem. Solids. 58, 133 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    K.P. Ghatak, B. De, Mat. Resc. Soc. Proc. 300, 513 (1993)CrossRefGoogle Scholar
  18. 18.
    K.P. Ghatak, B. Mitra, Il Nuovo Cimento. D 15, 97 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    K.P. Ghatak, Inter. Soci.Opt. and Photon. Proc. Soc. Photo Opt. Instrum. Engg. 1626, 115 (1992)Google Scholar
  20. 20.
    K.P. Ghatak, A. Ghoshal, Phys. Stat. Sol. (b) 170, K27 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    K.P. Ghatak, S. Bhattacharya, S.N. Biswas, Proc. Soc. Photo opt. instrum. Engg. 836, 72 (1988)Google Scholar
  22. 22.
    K.P. Ghatak, A. Ghoshal, S.N. Biswas, M. Mondal, Proc. Soc. Photo Opt. Instrum. Engg. 1308, 356 (1990)Google Scholar
  23. 23.
    K.P. Ghatak, B. De, Proc. Wide Bandgap Semiconductors Symposium, Material Research Society (377) (1992)Google Scholar
  24. 24.
    K.P. Ghatak, B. De, Defect Engg. Semi. Growth, Processing and Device Technoogy Symposium, Material Research Society 262, 911 (1992)Google Scholar
  25. 25.
    S.N. Biswas, K.P. Ghatak, Int. J. Electron. Theor. Exp. 70, 125 (1991)Google Scholar
  26. 26.
    B. Mitra, K.P. Ghatak, Phys. Lett. A 146, 357 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    B. Mitra, K.P. Ghatak, Phys. Lett. A 142, 401 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    K.P. Ghatak, B. Mitra, A. Ghoshal, Phy. Stat. Sol. (b) 154, K121 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    B. Mitra, K.P. Ghatak, Phys. Stat. Sol. (b). 149, K117 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    K.P. Ghatak, S.N. Biswas, Proc. Soc. Photo Opt. Instrum. Eng. 792, 239 (1987)Google Scholar
  31. 31.
    S. Bhattacharyya, K. P. Ghatak, S. Biswas, OE/Fibers’ 87, Int. Soc. Opt. Photon. (73) (1987)Google Scholar
  32. 32.
    M. Mondal, K.P. Ghatak, Czech. J. Phys. B. 36, 1389 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    K.P. Ghatak, A.N. Chakravarti, Phys. Stat. Sol. (b). 117, 707 (1983)ADSCrossRefGoogle Scholar
  34. 34.
    L.V. Keldysh, Sov. Phys. Solid State 4, 1658 (1962)Google Scholar
  35. 35.
    L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970)CrossRefGoogle Scholar
  36. 36.
    G. Bastard, Wave mechanics applied to heterostructures (Editions de Physique, Les Ulis, France, 1990)Google Scholar
  37. 37.
    E.L. Ivchenko, G. Pikus, Superlattices and other heterostructures, (Springer-Berlin, 1995)Google Scholar
  38. 38.
    R. Tsu, Superlattices to nanoelectronics (Elsevier, The Netherlands, 2005)Google Scholar
  39. 39.
    P. Fürjes, Cs. Dücs, M. Ádám, J. Zettner, I. Bársony. Superlattices Microstruct. 35, 455 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    T. Borca-Tasciuc, D. Achimov, W.L. Liu, G. Chen, H.W. Ren, C.H. Lin, S.S. Pei, Microscale Thermophys. Eng. 5, 225 (2001)CrossRefGoogle Scholar
  41. 41.
    B.S. Williams, Nat. Photonics 1, 517 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, F. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, Appl. Phys. Lett. 92, 201101 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    G.J. Brown, F. Szmulowicz, R. Linville, A. Saxler, K. Mahalingam, C.-H. Lin, C.H. Kuo, W.Y. Hwang, IEEE Photonics Technol. Letts. 12, 684 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    H.J. Haugan, G.J. Brown, L. Grazulis, K. Mahalingam, D.H. Tomich, Physics E: Low-Dimensional Syst. Nanostruct. 20, 527 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    S.A. Nikishin, V.V. Kuryatkov, A. Chandolu, B.A. Borisov, G.D. Kipshidze, I. Ahmad, M. Holtz, H. Temkin, Jpn. J. Appl. Phys. 42, L1362 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Y.K. Su, H.C. Wang, C.L. Lin, W.B. Chen, S.M. Chen, Jpn. J. Appl. Phys. 42, L751 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    C.H. Liu, Y.K. Su, L.W. Wu, S.J. Chang, R.W. Chuang, Semicond. Sci. Technol. 18, 545 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    S.B. Che, I. Nomura, A. Kikuchi, K. Shimomura, K. Kishino, Phys. Stat. Sol. (b) 229, 1001 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    C.P. Endres, F. Lewen, T.F. Giesen, S. SchlEEMer, D.G. Paveliev, Y.I. Koschurinov, V.M. Ustinov, A.E. Zhucov, Rev. Sci. Instrum. 78, 043106 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    F. Klappenberger, K.F. Renk, P. Renk, B. Rieder, Y.I. Koshurinov, D.G. Pavelev, V. Ustinov, A. Zhukov, N. Maleev, A. Vasilyev, Appl. Phys. Letts. 84, 3924 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    X. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto, Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, J. Crystal Growth 310, 5039 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    X. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, Appl. Phys. Express 1, 045002 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    B.H. Lee, K.H. Lee, S. Im, M.M. Sung, Org. Electron. 9, 1146 (2008)CrossRefGoogle Scholar
  55. 55.
    P.H. Wu, Y.K. Su, I.L. Chen, C.H. Chiou, J.T. Hsu, W.R. Chen, Jpn. J. Appl. Phys. 45, L647 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    A.C. Varonides, Renew. Energy 33, 273 (2008)CrossRefGoogle Scholar
  57. 57.
    M. Walther, G. Weimann, Phys. Stat. Sol. (b) 203, 3545 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, J. Ziegler, W. Cabanski, Opto-Electroni. Rev. 14, 19 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    R. Rehm, M. Walther, J. Scmitz, J. Fleissner, J. Ziegler, W. Cabanski, R. Breiter, Electron. Letts. 42, 577 (2006)CrossRefGoogle Scholar
  60. 60.
    G.J. Brown, F. Szmulowicz, H. Haugan, K. Mahalingam, S. Houston, Microelectron. J. 36, 256 (2005)CrossRefGoogle Scholar
  61. 61.
    K.V. Vaidyanathan, R.A. Jullens, C.L. Anderson, H.L. Dunlap, Solid State Electron. 26, 717 (1983)ADSCrossRefGoogle Scholar
  62. 62.
    B.A. Wilson, IEEE J. Quant. Electron. 24, 1763 (1988)ADSCrossRefGoogle Scholar
  63. 63.
    M. Krichbaum, P. Kocevar, H. Pascher, G. Bauer, IEEE J. Quant. Electron. 24, 717 (1988)Google Scholar
  64. 64.
    J.N. Schulman, T.C. McGill, Appl. Phys. Letts. 34, 663 (1979)ADSCrossRefGoogle Scholar
  65. 65.
    H. Kinoshita, T. Sakashita, H. Fajiyasu, J. Appl. Phys. 52, 2869 (1981)ADSCrossRefGoogle Scholar
  66. 66.
    L. Ghenin, R.G. Mani, J.R. Anderson, J.T. Cheung, Phys. Rev. B 39, 1419 (1989)ADSCrossRefGoogle Scholar
  67. 67.
    C.A. Hoffman, J.R. Mayer, F.J. Bartoli, J.W. Han, J.W. Cook, J.F. Schetzina, J.M. Schubman, Phys. Rev. B. 39, 5208 (1989)ADSCrossRefGoogle Scholar
  68. 68.
    V.A. Yakovlev, Sov. Phys. Semicon. 13, 692 (1979)Google Scholar
  69. 69.
    E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957)ADSCrossRefGoogle Scholar
  70. 70.
    H.X. Jiang, J.Y. Lin, J. Appl. Phys. 61, 624 (1987)ADSCrossRefGoogle Scholar
  71. 71.
    H. Sasaki, Phys. Rev. B 30, 7016 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations