Skip to main content

The EP from Heavily Doped (HD) Quantized Superlattices

  • Chapter
  • First Online:
  • 830 Accesses

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 262))

Abstract

With the advent of nano-photonics, there has been a considerable interest in studying the optical processes in semiconductors and their nanostructures. It appears from the literature, that the investigations have been carried out on the assumption that the carrier energy spectra are invariant quantities in the presence of intense light waves , which is not fundamentally true. In this chapter, we study the EP from HD III-V, ternary and quaternary materials in the presence of light waves on the basis of newly formulated dispersion laws. The EP of different HD optoelectronic material changes with light intensity and wavelength in different manners which are totally band structured independent. This chapter contains 6 open research problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Mukherjee, S.N. Mitra, P.K. Bose, A.R. Ghatak, A. Neoigi, J.P. Banerjee, A. Sinha, M. Pal, S. Bhattacharya, K.P. Ghatak, J. Comput. Theor. Nanosci. 4, 550 (2007)

    Google Scholar 

  2. N.G. Anderson, W.D. Laidig, R.M. Kolbas, Y.C. Lo, J. Appl. Phys. 60, 2361 (1986)

    Article  ADS  Google Scholar 

  3. N. Paitya, K.P. Ghatak, J. Adv. Phys. 1, 161 (2012)

    Article  Google Scholar 

  4. N. Paitya, S. Bhattacharya, D. De, K.P. Ghatak, Adv. Sci. Engg. Medi. 4, 96 (2012)

    Article  Google Scholar 

  5. S. Bhattacharya, D. Dkdhjskj, S.M. Adhikari, K.P. Ghatak, Superlatt. Microst. 51, 203 (2012)

    Article  Google Scholar 

  6. D. De, S. Bhattacharya, S.M. Adhikari, A. Kumar, P.K. Bose, K.P. Ghatak, Beilstein J. Nanotech. 2, 339 (2012)

    Article  Google Scholar 

  7. D. De, A. Kumar, S.M. Adhikari, S. Pahari, N. Islam, P. Banerjee, S.K. Biswas, S. Bhattacharya, K.P. Ghatak, Superlatt. Microstruct. 47, 377 (2010)

    Article  ADS  Google Scholar 

  8. S. Pahari, S. Bhattacharya, S. Roy, A. Saha, D. De, K. P. Ghatak, Superlatt. Microstruct. 46, (760) (2009)

    Google Scholar 

  9. S. Pahari, S. Bhattacharya, K. P. Ghatak J. Comput. Theory. Nanosci. 6, (2088) (2009)

    Google Scholar 

  10. S.K. Biswas, A.R. Ghatak, A. Neogi, A. Sharma, S. Bhattacharya, K.P. Ghatak, Phys. E: Low-dimen. Sys. and Nanostruct. 36, 163 (2007)

    Article  ADS  Google Scholar 

  11. L.J. Singh, S. Choudhury, D. Baruah, S.K. Biswas, S. Pahari, K.P. Ghatak, Phys. B: Conden. Matter 368, 188 (2005)

    Article  ADS  Google Scholar 

  12. S. Chowdhary, L.J. Singh, K.P. Ghatak, Phys. B: Conden. Matter 365, 5 (2005)

    Article  ADS  Google Scholar 

  13. L.J. Singh, S. Choudhary, A. Mallik, K.P. Ghatak, J. Comput. Theo. Nanosci. 2, 287 (2005)

    Article  Google Scholar 

  14. K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, SPIE Proc. Ser. 4746, 1292 (2002)

    Google Scholar 

  15. K.P. Ghatak, S. Dutta, D.K. Basu, B. Nag, Il Nuovo Cimento. D 20, 227 (1998)

    Article  ADS  Google Scholar 

  16. K.P. Ghatak, D.K. Basu, B. Nag, J. Phys. Chem. Solids. 58, 133 (1997)

    Article  ADS  Google Scholar 

  17. K.P. Ghatak, B. De, Mat. Resc. Soc. Proc. 300, 513 (1993)

    Article  Google Scholar 

  18. K.P. Ghatak, B. Mitra, Il Nuovo Cimento. D 15, 97 (1993)

    Article  ADS  Google Scholar 

  19. K.P. Ghatak, Inter. Soci.Opt. and Photon. Proc. Soc. Photo Opt. Instrum. Engg. 1626, 115 (1992)

    Google Scholar 

  20. K.P. Ghatak, A. Ghoshal, Phys. Stat. Sol. (b) 170, K27 (1992)

    Article  ADS  Google Scholar 

  21. K.P. Ghatak, S. Bhattacharya, S.N. Biswas, Proc. Soc. Photo opt. instrum. Engg. 836, 72 (1988)

    Google Scholar 

  22. K.P. Ghatak, A. Ghoshal, S.N. Biswas, M. Mondal, Proc. Soc. Photo Opt. Instrum. Engg. 1308, 356 (1990)

    Google Scholar 

  23. K.P. Ghatak, B. De, Proc. Wide Bandgap Semiconductors Symposium, Material Research Society (377) (1992)

    Google Scholar 

  24. K.P. Ghatak, B. De, Defect Engg. Semi. Growth, Processing and Device Technoogy Symposium, Material Research Society 262, 911 (1992)

    Google Scholar 

  25. S.N. Biswas, K.P. Ghatak, Int. J. Electron. Theor. Exp. 70, 125 (1991)

    Google Scholar 

  26. B. Mitra, K.P. Ghatak, Phys. Lett. A 146, 357 (1990)

    Article  ADS  Google Scholar 

  27. B. Mitra, K.P. Ghatak, Phys. Lett. A 142, 401 (1989)

    Article  ADS  Google Scholar 

  28. K.P. Ghatak, B. Mitra, A. Ghoshal, Phy. Stat. Sol. (b) 154, K121 (1989)

    Article  ADS  Google Scholar 

  29. B. Mitra, K.P. Ghatak, Phys. Stat. Sol. (b). 149, K117 (1988)

    Article  ADS  Google Scholar 

  30. K.P. Ghatak, S.N. Biswas, Proc. Soc. Photo Opt. Instrum. Eng. 792, 239 (1987)

    Google Scholar 

  31. S. Bhattacharyya, K. P. Ghatak, S. Biswas, OE/Fibers’ 87, Int. Soc. Opt. Photon. (73) (1987)

    Google Scholar 

  32. M. Mondal, K.P. Ghatak, Czech. J. Phys. B. 36, 1389 (1986)

    Article  ADS  Google Scholar 

  33. K.P. Ghatak, A.N. Chakravarti, Phys. Stat. Sol. (b). 117, 707 (1983)

    Article  ADS  Google Scholar 

  34. L.V. Keldysh, Sov. Phys. Solid State 4, 1658 (1962)

    Google Scholar 

  35. L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970)

    Article  Google Scholar 

  36. G. Bastard, Wave mechanics applied to heterostructures (Editions de Physique, Les Ulis, France, 1990)

    Google Scholar 

  37. E.L. Ivchenko, G. Pikus, Superlattices and other heterostructures, (Springer-Berlin, 1995)

    Google Scholar 

  38. R. Tsu, Superlattices to nanoelectronics (Elsevier, The Netherlands, 2005)

    Google Scholar 

  39. P. Fürjes, Cs. Dücs, M. Ádám, J. Zettner, I. Bársony. Superlattices Microstruct. 35, 455 (2004)

    Article  ADS  Google Scholar 

  40. T. Borca-Tasciuc, D. Achimov, W.L. Liu, G. Chen, H.W. Ren, C.H. Lin, S.S. Pei, Microscale Thermophys. Eng. 5, 225 (2001)

    Article  Google Scholar 

  41. B.S. Williams, Nat. Photonics 1, 517 (2007)

    Article  ADS  Google Scholar 

  42. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, F. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008)

    Article  ADS  Google Scholar 

  43. M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, Appl. Phys. Lett. 92, 201101 (2008)

    Article  ADS  Google Scholar 

  44. G.J. Brown, F. Szmulowicz, R. Linville, A. Saxler, K. Mahalingam, C.-H. Lin, C.H. Kuo, W.Y. Hwang, IEEE Photonics Technol. Letts. 12, 684 (2000)

    Article  ADS  Google Scholar 

  45. H.J. Haugan, G.J. Brown, L. Grazulis, K. Mahalingam, D.H. Tomich, Physics E: Low-Dimensional Syst. Nanostruct. 20, 527 (2004)

    Article  ADS  Google Scholar 

  46. S.A. Nikishin, V.V. Kuryatkov, A. Chandolu, B.A. Borisov, G.D. Kipshidze, I. Ahmad, M. Holtz, H. Temkin, Jpn. J. Appl. Phys. 42, L1362 (2003)

    Article  ADS  Google Scholar 

  47. Y.K. Su, H.C. Wang, C.L. Lin, W.B. Chen, S.M. Chen, Jpn. J. Appl. Phys. 42, L751 (2003)

    Article  ADS  Google Scholar 

  48. C.H. Liu, Y.K. Su, L.W. Wu, S.J. Chang, R.W. Chuang, Semicond. Sci. Technol. 18, 545 (2003)

    Article  ADS  Google Scholar 

  49. S.B. Che, I. Nomura, A. Kikuchi, K. Shimomura, K. Kishino, Phys. Stat. Sol. (b) 229, 1001 (2002)

    Article  ADS  Google Scholar 

  50. C.P. Endres, F. Lewen, T.F. Giesen, S. SchlEEMer, D.G. Paveliev, Y.I. Koschurinov, V.M. Ustinov, A.E. Zhucov, Rev. Sci. Instrum. 78, 043106 (2007)

    Article  ADS  Google Scholar 

  51. F. Klappenberger, K.F. Renk, P. Renk, B. Rieder, Y.I. Koshurinov, D.G. Pavelev, V. Ustinov, A. Zhukov, N. Maleev, A. Vasilyev, Appl. Phys. Letts. 84, 3924 (2004)

    Article  ADS  Google Scholar 

  52. X. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto, Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, J. Crystal Growth 310, 5039 (2008)

    Article  ADS  Google Scholar 

  53. X. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, Appl. Phys. Express 1, 045002 (2008)

    Article  ADS  Google Scholar 

  54. B.H. Lee, K.H. Lee, S. Im, M.M. Sung, Org. Electron. 9, 1146 (2008)

    Article  Google Scholar 

  55. P.H. Wu, Y.K. Su, I.L. Chen, C.H. Chiou, J.T. Hsu, W.R. Chen, Jpn. J. Appl. Phys. 45, L647 (2006)

    Article  ADS  Google Scholar 

  56. A.C. Varonides, Renew. Energy 33, 273 (2008)

    Article  Google Scholar 

  57. M. Walther, G. Weimann, Phys. Stat. Sol. (b) 203, 3545 (2006)

    Article  ADS  Google Scholar 

  58. R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, J. Ziegler, W. Cabanski, Opto-Electroni. Rev. 14, 19 (2006)

    Article  ADS  Google Scholar 

  59. R. Rehm, M. Walther, J. Scmitz, J. Fleissner, J. Ziegler, W. Cabanski, R. Breiter, Electron. Letts. 42, 577 (2006)

    Article  Google Scholar 

  60. G.J. Brown, F. Szmulowicz, H. Haugan, K. Mahalingam, S. Houston, Microelectron. J. 36, 256 (2005)

    Article  Google Scholar 

  61. K.V. Vaidyanathan, R.A. Jullens, C.L. Anderson, H.L. Dunlap, Solid State Electron. 26, 717 (1983)

    Article  ADS  Google Scholar 

  62. B.A. Wilson, IEEE J. Quant. Electron. 24, 1763 (1988)

    Article  ADS  Google Scholar 

  63. M. Krichbaum, P. Kocevar, H. Pascher, G. Bauer, IEEE J. Quant. Electron. 24, 717 (1988)

    Google Scholar 

  64. J.N. Schulman, T.C. McGill, Appl. Phys. Letts. 34, 663 (1979)

    Article  ADS  Google Scholar 

  65. H. Kinoshita, T. Sakashita, H. Fajiyasu, J. Appl. Phys. 52, 2869 (1981)

    Article  ADS  Google Scholar 

  66. L. Ghenin, R.G. Mani, J.R. Anderson, J.T. Cheung, Phys. Rev. B 39, 1419 (1989)

    Article  ADS  Google Scholar 

  67. C.A. Hoffman, J.R. Mayer, F.J. Bartoli, J.W. Han, J.W. Cook, J.F. Schetzina, J.M. Schubman, Phys. Rev. B. 39, 5208 (1989)

    Article  ADS  Google Scholar 

  68. V.A. Yakovlev, Sov. Phys. Semicon. 13, 692 (1979)

    Google Scholar 

  69. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957)

    Article  ADS  Google Scholar 

  70. H.X. Jiang, J.Y. Lin, J. Appl. Phys. 61, 624 (1987)

    Article  ADS  Google Scholar 

  71. H. Sasaki, Phys. Rev. B 30, 7016 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamakhya Prasad Ghatak .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghatak, K.P. (2015). The EP from Heavily Doped (HD) Quantized Superlattices. In: Einstein's Photoemission. Springer Tracts in Modern Physics, vol 262. Springer, Cham. https://doi.org/10.1007/978-3-319-11188-9_4

Download citation

Publish with us

Policies and ethics