Advertisement

The EP from Quantum Box of Heavily Doped (HD) Non-parabolic Semiconductors

Chapter
  • 712 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 262)

Abstract

This chapter explores the EP from QBs of HD nonlinear optical semiconductors based on a newly formulated electron dispersion relation considering all types of anisotropies of the energy band spectrum within the framework of k.p formalism in the presence of Gaussian band tails. We have also investigated the EP from QBs of HD III-V, II-VI, IV-VI, stressed Kane type semiconductors, Te, GaP, PtSb2, Bi2Te3, Ge and GaSb on the basis of newly derived respective E-k relation under heavy doping. We observe that the EP changes with increasing electron concentration and decreasing film thickness in different manners, which is the characteristic feature of such QB structures and the numerical values are totally band structure dependent. The EP increases with increasing photo energy in a step-like fashion for all the cases. The Sect. 3.4 contains 23 open research problems, which form the integral part of chapter one of this book.

Keywords

Band Tail Dispersion relationDispersion Relation Bi 2Te 3 Stressed Kane Type Semiconductors Total Electron Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999)Google Scholar
  2. 2.
    G. Konstantatos, I. Howard, A. Fischer, S. Howland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Nature 442, 180 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Nat. Biotechnol. 21, 47 (2003)CrossRefGoogle Scholar
  4. 4.
    A. Watson, X. Wu, M. Bruchez, Biotechniques 34, 296 (2003)Google Scholar
  5. 5.
    J. Nakanishi, Y. Kikuchi, T. Takarada, H. Nakayama, K. Yamaguchi, M. Maeda, J. Am. Chem. Soc. 126, 16314 (2004)CrossRefGoogle Scholar
  6. 6.
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    W.G.J.H.M. van Sark, P.L.T.M. Frederix, D.J. Van den Heuvel, H.C.G.A. Bol, J.N.J. van Lingen, de Mello Donegá C. Meijerink A J. Phys. Chem. B 105, 8281 (2001)CrossRefGoogle Scholar
  8. 8.
    E.J. Sánchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    B. Bailey, D.L. Farkas, D.L. Taylor, F. Lanni, Nature 366, 44 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    L.V. Asryan, R.A. Suris, in Selected Topics in Electronics and Systems, ed. by E. Borovitskaya, M.S. Shur, vol. 25 (World Scientific, Singapore, 2002)Google Scholar
  11. 11.
    L.V. Asryan, R.A. Suris, Int. J. High Speed Electron. Syst., Special issue on Quantum dot heterostructures—fabrication, application, theory, 12(1), 111 (2002)Google Scholar
  12. 12.
    L.V. Asryan, S. Luryi, Future Trends in Microelectronics: The Nano Millennium, ed. by S. Luryi, J.M. Xu, A. Zaslavsky, Wiley Interscience, New York, (2002) p. 219Google Scholar
  13. 13.
    R.A. Freitas Jr., J. Comput. Theor. Nanosci. 2, 1 (2005)Google Scholar
  14. 14.
    A. Ferreira, C. Mavroidis, IEEE Robot. Autom. Mag. 13, 78 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Dubey, G. Sharma, C. Mavroidis, S.M. Tomassone, K. Nikitczuk, M.L. Yarmush, J. Comput. Theor. Nanosci. 1, 18 (2004)CrossRefGoogle Scholar
  16. 16.
    C. Mavroidis, A. Dubey, M.L. Yarmush, Ann. Rev. Biomed. Eng. 6, 363 (2004)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, J. A. Starzyk, Z. Zhu, IEEE Trans. Neural Networks (2008) [In the press]Google Scholar
  18. 18.
    J.A. Starzyk, H. He, IEEE Trans. Neural Networks 18(2), 344 (2007)CrossRefGoogle Scholar
  19. 19.
    J.A. Starzyk, H. He, IEEE Trans. Circuits Syst. II 54(2), 176 (2007)CrossRefGoogle Scholar
  20. 20.
    E.-S. Hasaneen, E. Heller, R. Bansal, W. Huang, F. Jain, Solid State Electron. 48, 2055 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    T. Kawazoe, S. Tanaka, M. Ohtsu, J. Nanophoton. 2, 029502 (2008)CrossRefGoogle Scholar
  22. 22.
    H.J. Krenner, S. Stufler, M. Sabathil, E.C. Clark, P. Ester, M. Bichler, G. Abstreiter, J.J. Finley, A. Zrenner, New J. Phys. 7, 184 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    A.E. Zhukov, A.R. Kovsh, Quantum Electron. 38, 409 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, H. Ishikawa, Meas. Sci. Technol. 13, 1683 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    M. van der Poel, D. Birkedal, J. Hvam, M. Laemmlin, D. Bimberg, in Conference on Lasers and Electro-Optics (CLEO), vol. 1, (2004) p. 16Google Scholar
  26. 26.
    J.M. Costa-Fernandez, Anal. Bioanal. Chem. 384, 37 (2006)CrossRefGoogle Scholar
  27. 27.
    H.S. Djie, C.E. Dimas, D.-N. Wang, B.-S. Ooi, J.C.M. Hwang, G.T. Dang, W.H. Chang, IEEE Sens. J. 7, 251 (2007)CrossRefGoogle Scholar
  28. 28.
    X.-X. Zhu, Y.-C. Cao, X. Jin, J. Yang, X.-F. Hua, H.-Q. Wang, B. Liu, Z. Wang, J.-H. Wang, L. Yang, Y.-D. Zhao, Nanotechnology 19, 025708 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    X. Gao, W.C.W. Chan, S. Nie, J. Biomed. Opt. 7, 532 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    J.K. Jaiswal, E.R. Goldman, H. Mattoussi, S.M. Simon, Nat. Methods 1, 73 (2004)CrossRefGoogle Scholar
  32. 32.
    H. Matsueda, Int. J. Circuit Theo. Appl. 31, 23 (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    X. Hu, S. Das Sarma, Phys. Status Solidi B 238, 360 (2003)Google Scholar
  34. 34.
    G.-L. Chen, D.M.T. Kuo, W.-T. Lai, P.-W. Li, Nanotechnology 18, 475402 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A.G. Pogosov, M.V. Budantsev, A.A. Shevyrin, A.E. Plotnikov, A.K. Bakarov, A.I. Toropov, JETP Lett. 87, 150 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    K.W. Johnston, A.G. Pattantyus-Abraham, J.P. Clifford, S.H. Myrskog, D.D. MacNeil, L. Levina, E.H. Sargent, Appl. Phys. Letts. 92, 151115 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    K.S. Leschkies, R. Divakar, J. Basu, E.E. Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Nano Lett. 7, 1793 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, S.-C. Liou, J. Mater. Chem. 18, 675 (2008)CrossRefGoogle Scholar
  39. 39.
    N. Hitoshi, Y. Sugimoto, K. Nanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, K. Asakawa, Opt. Express 12, 6606 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    N. Yamamoto, T. Matsuno, H. Takai, N. Ohtani, Jpn. J. Appl. Phys. 44, 4749 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    T. Yamada, Y. Kinoshita, S. Kasai, H. Hasegawa, Y. Amemiya, Jpn. J. Appl. Phys. 40, 4485 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P.I. Borel, R. Baets, New J. Phys. 8, 208 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    A.R. Clapp, I.L. Medintz, B.R. Fisher, G.P. Anderson, H. Mattoussi, J. Am. Chem. Soc. 127, 1242 (2005)CrossRefGoogle Scholar
  44. 44.
    L. Shi, B. Hernandez, M. Selke, J. Am. Chem. Soc. 128, 6278 (2006)CrossRefGoogle Scholar
  45. 45.
    C. Wu, J. Zheng, C. Huang, J. Lai, S. Li, C. Chen, Y. Zhao, Angew. Chem. Int. Ed. 46, 5393 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations