Skip to main content

The EP from Quantum Box of Heavily Doped (HD) Non-parabolic Semiconductors

  • Chapter
  • First Online:
Einstein's Photoemission

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 262))

  • 824 Accesses

Abstract

This chapter explores the EP from QBs of HD nonlinear optical semiconductors based on a newly formulated electron dispersion relation considering all types of anisotropies of the energy band spectrum within the framework of k.p formalism in the presence of Gaussian band tails. We have also investigated the EP from QBs of HD III-V, II-VI, IV-VI, stressed Kane type semiconductors, Te, GaP, PtSb2, Bi2Te3, Ge and GaSb on the basis of newly derived respective E-k relation under heavy doping. We observe that the EP changes with increasing electron concentration and decreasing film thickness in different manners, which is the characteristic feature of such QB structures and the numerical values are totally band structure dependent. The EP increases with increasing photo energy in a step-like fashion for all the cases. The Sect. 3.4 contains 23 open research problems, which form the integral part of chapter one of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999)

    Google Scholar 

  2. G. Konstantatos, I. Howard, A. Fischer, S. Howland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Nature 442, 180 (2006)

    Article  ADS  Google Scholar 

  3. J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Nat. Biotechnol. 21, 47 (2003)

    Article  Google Scholar 

  4. A. Watson, X. Wu, M. Bruchez, Biotechniques 34, 296 (2003)

    Google Scholar 

  5. J. Nakanishi, Y. Kikuchi, T. Takarada, H. Nakayama, K. Yamaguchi, M. Maeda, J. Am. Chem. Soc. 126, 16314 (2004)

    Article  Google Scholar 

  6. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)

    Article  ADS  Google Scholar 

  7. W.G.J.H.M. van Sark, P.L.T.M. Frederix, D.J. Van den Heuvel, H.C.G.A. Bol, J.N.J. van Lingen, de Mello Donegá C. Meijerink A J. Phys. Chem. B 105, 8281 (2001)

    Article  Google Scholar 

  8. E.J. Sánchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999)

    Article  ADS  Google Scholar 

  9. B. Bailey, D.L. Farkas, D.L. Taylor, F. Lanni, Nature 366, 44 (1993)

    Article  ADS  Google Scholar 

  10. L.V. Asryan, R.A. Suris, in Selected Topics in Electronics and Systems, ed. by E. Borovitskaya, M.S. Shur, vol. 25 (World Scientific, Singapore, 2002)

    Google Scholar 

  11. L.V. Asryan, R.A. Suris, Int. J. High Speed Electron. Syst., Special issue on Quantum dot heterostructures—fabrication, application, theory, 12(1), 111 (2002)

    Google Scholar 

  12. L.V. Asryan, S. Luryi, Future Trends in Microelectronics: The Nano Millennium, ed. by S. Luryi, J.M. Xu, A. Zaslavsky, Wiley Interscience, New York, (2002) p. 219

    Google Scholar 

  13. R.A. Freitas Jr., J. Comput. Theor. Nanosci. 2, 1 (2005)

    Google Scholar 

  14. A. Ferreira, C. Mavroidis, IEEE Robot. Autom. Mag. 13, 78 (2006)

    Article  Google Scholar 

  15. A. Dubey, G. Sharma, C. Mavroidis, S.M. Tomassone, K. Nikitczuk, M.L. Yarmush, J. Comput. Theor. Nanosci. 1, 18 (2004)

    Article  Google Scholar 

  16. C. Mavroidis, A. Dubey, M.L. Yarmush, Ann. Rev. Biomed. Eng. 6, 363 (2004)

    Article  Google Scholar 

  17. Y. Liu, J. A. Starzyk, Z. Zhu, IEEE Trans. Neural Networks (2008) [In the press]

    Google Scholar 

  18. J.A. Starzyk, H. He, IEEE Trans. Neural Networks 18(2), 344 (2007)

    Article  Google Scholar 

  19. J.A. Starzyk, H. He, IEEE Trans. Circuits Syst. II 54(2), 176 (2007)

    Article  Google Scholar 

  20. E.-S. Hasaneen, E. Heller, R. Bansal, W. Huang, F. Jain, Solid State Electron. 48, 2055 (2004)

    Article  ADS  Google Scholar 

  21. T. Kawazoe, S. Tanaka, M. Ohtsu, J. Nanophoton. 2, 029502 (2008)

    Article  Google Scholar 

  22. H.J. Krenner, S. Stufler, M. Sabathil, E.C. Clark, P. Ester, M. Bichler, G. Abstreiter, J.J. Finley, A. Zrenner, New J. Phys. 7, 184 (2005)

    Article  ADS  Google Scholar 

  23. A.E. Zhukov, A.R. Kovsh, Quantum Electron. 38, 409 (2008)

    Article  ADS  Google Scholar 

  24. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, H. Ishikawa, Meas. Sci. Technol. 13, 1683 (2002)

    Article  ADS  Google Scholar 

  25. M. van der Poel, D. Birkedal, J. Hvam, M. Laemmlin, D. Bimberg, in Conference on Lasers and Electro-Optics (CLEO), vol. 1, (2004) p. 16

    Google Scholar 

  26. J.M. Costa-Fernandez, Anal. Bioanal. Chem. 384, 37 (2006)

    Article  Google Scholar 

  27. H.S. Djie, C.E. Dimas, D.-N. Wang, B.-S. Ooi, J.C.M. Hwang, G.T. Dang, W.H. Chang, IEEE Sens. J. 7, 251 (2007)

    Article  Google Scholar 

  28. X.-X. Zhu, Y.-C. Cao, X. Jin, J. Yang, X.-F. Hua, H.-Q. Wang, B. Liu, Z. Wang, J.-H. Wang, L. Yang, Y.-D. Zhao, Nanotechnology 19, 025708 (2008)

    Article  ADS  Google Scholar 

  29. X. Gao, W.C.W. Chan, S. Nie, J. Biomed. Opt. 7, 532 (2002)

    Article  ADS  Google Scholar 

  30. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)

    Article  ADS  Google Scholar 

  31. J.K. Jaiswal, E.R. Goldman, H. Mattoussi, S.M. Simon, Nat. Methods 1, 73 (2004)

    Article  Google Scholar 

  32. H. Matsueda, Int. J. Circuit Theo. Appl. 31, 23 (2003)

    Article  MATH  Google Scholar 

  33. X. Hu, S. Das Sarma, Phys. Status Solidi B 238, 360 (2003)

    Google Scholar 

  34. G.-L. Chen, D.M.T. Kuo, W.-T. Lai, P.-W. Li, Nanotechnology 18, 475402 (2007)

    Article  ADS  Google Scholar 

  35. A.G. Pogosov, M.V. Budantsev, A.A. Shevyrin, A.E. Plotnikov, A.K. Bakarov, A.I. Toropov, JETP Lett. 87, 150 (2008)

    Article  ADS  Google Scholar 

  36. K.W. Johnston, A.G. Pattantyus-Abraham, J.P. Clifford, S.H. Myrskog, D.D. MacNeil, L. Levina, E.H. Sargent, Appl. Phys. Letts. 92, 151115 (2008)

    Article  ADS  Google Scholar 

  37. K.S. Leschkies, R. Divakar, J. Basu, E.E. Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Nano Lett. 7, 1793 (2007)

    Article  ADS  Google Scholar 

  38. I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, S.-C. Liou, J. Mater. Chem. 18, 675 (2008)

    Article  Google Scholar 

  39. N. Hitoshi, Y. Sugimoto, K. Nanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, K. Asakawa, Opt. Express 12, 6606 (2004)

    Article  ADS  Google Scholar 

  40. N. Yamamoto, T. Matsuno, H. Takai, N. Ohtani, Jpn. J. Appl. Phys. 44, 4749 (2005)

    Article  ADS  Google Scholar 

  41. T. Yamada, Y. Kinoshita, S. Kasai, H. Hasegawa, Y. Amemiya, Jpn. J. Appl. Phys. 40, 4485 (2001)

    Article  ADS  Google Scholar 

  42. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P.I. Borel, R. Baets, New J. Phys. 8, 208 (2006)

    Article  ADS  Google Scholar 

  43. A.R. Clapp, I.L. Medintz, B.R. Fisher, G.P. Anderson, H. Mattoussi, J. Am. Chem. Soc. 127, 1242 (2005)

    Article  Google Scholar 

  44. L. Shi, B. Hernandez, M. Selke, J. Am. Chem. Soc. 128, 6278 (2006)

    Article  Google Scholar 

  45. C. Wu, J. Zheng, C. Huang, J. Lai, S. Li, C. Chen, Y. Zhao, Angew. Chem. Int. Ed. 46, 5393 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamakhya Prasad Ghatak .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghatak, K.P. (2015). The EP from Quantum Box of Heavily Doped (HD) Non-parabolic Semiconductors. In: Einstein's Photoemission. Springer Tracts in Modern Physics, vol 262. Springer, Cham. https://doi.org/10.1007/978-3-319-11188-9_3

Download citation

Publish with us

Policies and ethics