Advertisement

The EP from Nano Wires (NWs) of Heavily Doped (HD) Non-parabolic Semiconductors

Chapter
  • 710 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 262)

Abstract

This chapter explores the EP from QBs of HD nonlinear optical semiconductors based on a newly formulated electron dispersion relation considering all types of anisotropies of the energy band spectrum within the framework of k.p formalism in the presence of Gaussian band tails. We have also investigated the EP from QBs of HD III-V, II-VI, IV-VI, stressed Kane type semiconductors, Te, GaP, PtSb2, Bi2Te3, Ge and GaSb on the basis of newly derived respective E-k relation under heavy doping. We observe that the EP changes with increasing electron concentration and decreasing film thickness in different manners, which is the characteristic feature of such QB structures and the numerical values are totally band structure dependent. The EP increases with increasing photo energy in a step-like fashion for all the cases. The Sect. 3.4 contains 23 open research problems, which form the integral part of chapter one of this book.

Keywords

Nanowires (NWs) Band Tail Stressed Kane Type Semiconductors Bi 2Te 3 Dispersion relationDispersion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Harrison, Quantum Wells Wires and Dots (Wiley, NY, 2002)Google Scholar
  2. 2.
    B.K. Ridley, Electrons and Phonons in Semiconductors Multilayers (Cambridge University Press, Cambridge, 1997)Google Scholar
  3. 3.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted; Les Ulis Les Editions de Physique, New York, 1988)Google Scholar
  4. 4.
    V.V. Martin, A.A. Kochelap, M.A. Stroscio, Quantum Heterostructures (Cambridge University Press, Cambridge, 1999)Google Scholar
  5. 5.
    C.S. Lent, D.J. Kirkner, J. Appl. Phys. 67, 6353 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    F. Sols, M. Macucci, U. Ravaioli, K. Hess, Appl. Phys. Lett. 54, 350 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    C.S. Kim, A.M. Satanin, Y.S. Joe, R.M. Cosby, Phys. Rev. B 60, 10962 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Midgley, J.B. Wang, Phys. Rev. B 64, 153304 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    T. Sugaya, J.P. Bird, M. Ogura, Y. Sugiyama, D.K. Ferry, K.Y. Jang, Appl. Phys. Lett. 80, 434 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    B. Kane, G. Facer, A. Dzurak, N. Lumpkin, R. Clark, L. PfeiKer, K. West, Appl. Phys. Lett. 72, 3506 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    C. Dekker, Phys. Today 52, 22 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 77, 4612 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Hayamizu, M. Yoshita, S. Watanabe, H.A.L. PfeiKer, K. West, Appl. Phys. Lett. 81, 4937 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    S. Frank, P. Poncharal, Z.L. Wang, W.A. Heer, Science 280, 1744 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    I. Kamiya, I.I. Tanaka, K. Tanaka, F. Yamada, Y. Shinozuka, H. Sakaki, Physica E 13, 131 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Geim, P.C. Main, N. LaScala, L. Eaves, T.J. Foster, P.H. Beton, J.W. Sakai, F.W. Sheard, M. Henini, G. Hill et al., Phys. Rev. Lett. 72, 2061 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    A.S. Melinkov, V.M. Vinokur, Nature 415, 60 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    K. Schwab, E.A. henriksen, J.M. Worlock, M.L. Roukes, Nature 404, 974 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    L. Kouwenhoven, Nature 403, 374 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    S. Komiyama, O. Astafiev, V. Antonov, H. Hirai, Nature 403, 405 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    E. Paspalakis, Z. Kis, E. Voutsinas, A.F. Terziz, Phys. Rev. B 69, 155316 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    J.H. Jefferson, M. Fearn, D.L.J. Tipton, T.P. Spiller, Phys. Rev. A 66, 042328 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    J. Appenzeller, C. Schroer, T. Schapers, A. Hart, A. Froster, B. Lengeler, H. Luth, Phys. Rev. B 53, 9959 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    J. Appenzeller, C. Schroer, J. Appl. Phys. 87, 31659 (2002)Google Scholar
  25. 25.
    P. Debray, O.E. Raichev, M. Rahman, R. Akis, W.C. Mitchel, Appl. Phys. Lett. 74, 768 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    P.M. Solomon, Proc. IEEE 70, 489 (1982)CrossRefGoogle Scholar
  27. 27.
    T.E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49, 519 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    D. Kasemet, C.S. Hong, N.B. Patel, P.D. Dapkus, Appl. Phys. Letts. 41, 912 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    K. Woodbridge, P. Blood, E.D. Pletcher, P.J. Hulyer, Appl. Phys. Lett. 45, 16 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    S. Tarucha, H.O. Okamoto, Appl. Phys. Letts. 45, 16 (1984)CrossRefGoogle Scholar
  31. 31.
    H. Heiblum, D.C. Thomas, C.M. Knoedler, M.I. Nathan, Appl. Phys. Letts. 47, 1105 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    O. Aina, M. Mattingly, F.Y. Juan, P.K. Bhattacharyya, Appl. Phys. Letts. 50, 43 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    I. Suemune, L.A. Coldren, IEEE J. Quant. Electronic. 24, 1178 (1988)CrossRefGoogle Scholar
  34. 34.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, J.H. Wood, A.C. Burrus, A.C. Gossard, W. Weigmann, IEEE J. Quant. Electron. 21, 1462 (1985)ADSCrossRefGoogle Scholar
  35. 35.
    J.S. Blakemore, Semiconductor Statistics (Dover, New York, 1987)Google Scholar
  36. 36.
    K.P. Ghatak, S. Bhattacharya, S.K. Biswas, A. Dey, A.K. Dasgupta, Phys. Scr. 75, 820 (2007)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations