Advertisement

The EP from Quantum Wells (QWs) of Heavily Doped (HD) Non-parabolic Semiconductors

Chapter
  • 734 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 262)

Abstract

This chapter explores the EP from QWs of HD nonlinear optical semiconductors based on a newly formulated electron dispersion relation considering all types of anisotropies of the energy band spectrum within the framework of k.p formalism in the presence of Gaussian band tails. We have also investigated the EP from QWs of HD III-V, II-VI, IV-VI, stressed Kane type semiconductors, Te, GaP, PtSb2, Bi2Te3, Ge and GaSb on the basis of newly derived respective E-k relation under heavy doping. We observe that the EP increases with increasing surface electron concentration and decreasing film thickness in spikey manners, which is the characteristic feature of such 2D structures and the numerical values are totally band structure dependent. The EP increases with increasing photo energy in a step-like fashion for all the cases. The analyses for bulk HD materials have also been performed for the purpose of relative comparison. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tail creates the complex energy spectrum in the corresponding HD samples and effective electron mass exists within the band gap which is impossible without the concept of band tails. The Sect. 1.4 contains 22 open research problems, which form the integral part of chapter one of this book.

References

  1. 1.
    R.K. Pathria, Statistical Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1996)zbMATHGoogle Scholar
  2. 2.
    P.M. Petroff, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984)ADSGoogle Scholar
  3. 3.
    J.M. Gaines, P.M. Petroff, H. Kroemar, R.J. Simes, R.S. Geels, J.H. English, J. Vac. Sci. Technol. B 6, 1378 (1988)ADSGoogle Scholar
  4. 4.
    J. Cilbert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, J.H. English, Appl. Phys. Lett. 49, 1275 (1986)ADSGoogle Scholar
  5. 5.
    T. Fujui, H. Saito, Appl. Phys. Lett. 50, 824 (1987)ADSGoogle Scholar
  6. 6.
    H. Sasaki, Jpn. J. Appl. Phys. 19, 94 (1980)Google Scholar
  7. 7.
    P.M. Petroff, A.C. Gossard, R.A. Logan, W. Weigmann, Appl. Phys. Lett. 41, 635 (1982)ADSGoogle Scholar
  8. 8.
    H. Temkin, G.J. Dolan, M.B. Panish, S.N.G. Chu, Appl. Phys. Lett. 50, 413 (1988)ADSGoogle Scholar
  9. 9.
    I. Miller, A. Miller, A. Shahar, U. Koren, P.J. Corvini, Appl. Phys. Lett. 54, 188 (1989)ADSGoogle Scholar
  10. 10.
    L.L. Chang, H. Esaki, C.A. Chang, L. Esaki, Phys. Rev. Lett. 38, 1489 (1977)ADSGoogle Scholar
  11. 11.
    K. Hess, M.S. Shur, J.J. Drunnond, H. Morkoc, IEEE Trans. Electron. Devices ED-30, 07 (1983)Google Scholar
  12. 12.
    G. Bastard, Wave Mechanics Applied to Semiconductor Hetero-structures, Les Editions de Physique (Halsted, Les Ulis, New York, 1988)Google Scholar
  13. 13.
    M.J. Kelly, Low Dimensional Semiconductors: Materials, Physics, Technology, Devices (Oxford University Press, Oxford, 1995)Google Scholar
  14. 14.
    C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Boston Academic Press, Boston, 1991)Google Scholar
  15. 15.
    N.T. Linch, Festkorperprobleme 23, 27 (1985)Google Scholar
  16. 16.
    D.R. Sciferes, C. Lindstrom, R.D. Burnham, W. Streifer, T.L. Paoli, Electron. Lett. 19, 170 (1983)Google Scholar
  17. 17.
    P.M. Solomon, Proc. IEEE 70, 489 (1982)Google Scholar
  18. 18.
    T.E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49, 519 (1986)ADSGoogle Scholar
  19. 19.
    D. Kasemet, C.S. Hong, N.B. Patel, P.D. Dapkus, Appl. Phys. Lett. 41, 912 (1982)ADSGoogle Scholar
  20. 20.
    K. Woodbridge, P. Blood, E.D. Pletcher, P.J. Hulyer, Appl. Phys. Lett. 45, 16 (1984)ADSGoogle Scholar
  21. 21.
    S. Tarucha, H.O. Okamoto, Appl. Phys. Lett. 45, 16 (1984)Google Scholar
  22. 22.
    H. Heiblum, D.C. Thomas, C.M. Knoedler, M.I. Nathan, Appl. Phys. Lett. 47, 1105 (1985)ADSGoogle Scholar
  23. 23.
    O. Aina, M. Mattingly, F.Y. Juan, P.K. Bhattacharyya, Appl. Phys. Lett. 50, 43 (1987)ADSGoogle Scholar
  24. 24.
    I. Suemune, L.A. Coldren, IEEE J. Quant. Electron. 24, 1178 (1988)Google Scholar
  25. 25.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, J.H. Wood, A.C. Burrus, A.C. Gossard, W. Weigmann, IEEE J. Quant. Electron. 21, 1462 (1985)ADSGoogle Scholar
  26. 26.
    J.W. Rowe, J.L. Shay, Phys. Rev. B 3, 451 (1973)ADSGoogle Scholar
  27. 27.
    H. Kildal, Phys. Rev. B 10, 5082 (1974)ADSGoogle Scholar
  28. 28.
    J. Bodnar, in Proceedings of the International Conference on Physics of Narrow-gap Semiconductors (Polish Science Publishers, Warsaw, 1978)Google Scholar
  29. 29.
    G.P. Chuiko, N.N. Chuiko, Sov. Phys. Semicond. 15, 739 (1981)Google Scholar
  30. 30.
    K.P. Ghatak, S.N. Biswas, Proc. SPIE 1484, 149 (1991)ADSGoogle Scholar
  31. 31.
    A. Rogalski, J. Alloys Comp. 371, 53 (2004)Google Scholar
  32. 32.
    A. Baumgartner, A. Chaggar, A. Patanè, L. Eaves, M. Henini, Appl. Phys. Lett. 92, 091121 (2008)ADSGoogle Scholar
  33. 33.
    J. Devenson, R. Teissier, O. Cathabard, A.N. Baranov, Proc. SPIE 6909, 69090U (2008)ADSGoogle Scholar
  34. 34.
    B.S. Passmore, J. Wu, M.O. Manasreh, G.J. Salamo, Appl. Phys. Lett. 91, 233508 (2007)ADSGoogle Scholar
  35. 35.
    M. Mikhailova, N. Stoyanov, I. Andreev, B. Zhurtanov, S. Kizhaev, E. Kunitsyna, K. Salikhov, Y. Yakovlev, Proc. SPIE 6585, 658526 (2007)Google Scholar
  36. 36.
    W. Kruppa, J.B. Boos, B.R. Bennett, N.A. Papanicolaou, D. Park, R. Bass, Electron. Lett. 42, 688 (2006)Google Scholar
  37. 37.
    E.O. Kane, in Semiconductors and Semimetals, vol. 1, ed. by R.K. Willardson, A.C. Beer, Academic Press, New York, 75 (1966)Google Scholar
  38. 38.
    B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Heidelberg, 1980)Google Scholar
  39. 39.
    A.N. Chakravarti, K.P. Ghatak, A. Dhar, K.K. Ghosh, S. Ghosh, Acta Phys. Polon A 60, 151 (1981)Google Scholar
  40. 40.
    G.E. Stillman, C.M. Wolfe, J.O. Dimmock, in Semiconductors and Semimetals, 12, ed. by R.K. Willardon, A.C. Beer Academic Press, New York, 169 (1977)Google Scholar
  41. 41.
    D.J. Newson, A. Karobe, Semicond. Sci. Tech. 3, 786 (1988)ADSGoogle Scholar
  42. 42.
    E.D. Palik, G.S. Picus, S. Teither, R.E. Wallis, Phys. Rev. 475 (1961)Google Scholar
  43. 43.
    P.Y. Lu, C.H. Wung, C.M. Williams, S.N.G. Chu, C.M. Stiles, Appl. Phys. Lett. 49, 1372 (1986)ADSGoogle Scholar
  44. 44.
    N.R. Taskar, I.B. Bhat, K.K. Prat, D. Terry, H. Ehasani, S.K. Ghandhi, J. Vac. Sci. Tech. 7A, 281 (1989)ADSGoogle Scholar
  45. 45.
    F. Koch, Springer Series in Solid States Sciences (Springer, Germany, 1984)Google Scholar
  46. 46.
    L.R. Tomasetta, H.D. Law, R.C. Eden, I. Reyhimy, K. Nakano, IEEE J. Quant. Electron. 14, 800 (1978)ADSGoogle Scholar
  47. 47.
    T. Yamato, K. Sakai, S. Akiba, Y. Suematsu, IEEE J. Quantum Electron. 14, 95 (1978)ADSGoogle Scholar
  48. 48.
    T.P. Pearsall, B.I. Miller, R.J. Capik, Appl. Phys. Lett. 28, 499 (1976)ADSGoogle Scholar
  49. 49.
    M.A. Washington, R.E. Nahory, M.A. Pollack, E.D. Beeke, Appl. Phys. Lett. 33, 854 (1978)ADSGoogle Scholar
  50. 50.
    M.I. Timmons, S.M. Bedair, R.J. Markunas, J.A. Hutchby, in Proceedings of the 16th IEEE Photovoltaic Specialist Conference (IEEE, San Diego, California 666, 1982)Google Scholar
  51. 51.
    J.A. Zapien, Y.K. Liu, Y.Y. Shan, H. Tang, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 90, 213114 (2007)ADSGoogle Scholar
  52. 52.
    M. Park, Proc. SPIE 2524, 142 (1995)ADSGoogle Scholar
  53. 53.
    S.-G. Hur, E.T. Kim, J.H. Lee, G.H. Kim, S.G. Yoon, Electrochem. Solid-State Lett. 11, H176 (2008)Google Scholar
  54. 54.
    H. Kroemer, Rev. Mod. Phys. 73, 783 (2001)ADSGoogle Scholar
  55. 55.
    T. Nguyen Duy, J. Meslage, G. Pichard, J. Crys. Growth 72, 490 (1985)Google Scholar
  56. 56.
    T. Aramoto, F. Adurodija, Y. Nishiyama, T. Arita, A. Hanafusa, K. Omura, A. Morita, Solar Energy Mater. Solar Cells 75, 211 (2003)Google Scholar
  57. 57.
    H.B. Barber, J. Electron. Mater. 25, 1232 (1996)ADSGoogle Scholar
  58. 58.
    S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, M. Ikeda, Electron. Lett. 32, 552 (1996)Google Scholar
  59. 59.
    J.J. Hopfield, J. Appl. Phys. 32, 2277 (1961)ADSGoogle Scholar
  60. 60.
    G.P. Agrawal, N.K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993)Google Scholar
  61. 61.
    S. Chatterjee, U. Pal, Opt. Eng. (Bellingham) 32, 2923 (1993)ADSGoogle Scholar
  62. 62.
    T.K. Chaudhuri, Int. J. Energy Res. 16, 481 (1992)Google Scholar
  63. 63.
    J.H. Dughaish, Phys. B 322, 205 (2002)ADSGoogle Scholar
  64. 64.
    C. Wood, Rep. Prog. Phys. 51, 459 (1988)ADSGoogle Scholar
  65. 65.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004)ADSGoogle Scholar
  66. 66.
    J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, M.G. Kanatzidis, Adv. Mater. 18, 1170 (2006)Google Scholar
  67. 67.
    P.F.P. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, M.G. Kanatzidis, Angew. Chem. Int. Ed. 45, 3835 (2006)Google Scholar
  68. 68.
    P.F. Poudeu, J. D’Angelo, H. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 128, 14347 (2006)Google Scholar
  69. 69.
    J.R. Sootsman, R.J. Pcionek, H. Kong, C. Uher, M.G. Kanatzidis, Chem. Mater. 18, 4993 (2006)Google Scholar
  70. 70.
    A.J. Mountvala, G. Abowitz, J. Am. Ceram. Soc. 48, 651 (1965)Google Scholar
  71. 71.
    E.I. Rogacheva, I.M. Krivulkin, O.N. Nashchekina, AYu. Sipatov, V.A. Volobuev, M.S. Dresselhaus, Appl. Phys. Lett. 78, 3238 (2001)ADSGoogle Scholar
  72. 72.
    H.S. Lee, B. Cheong, T.S. Lee, K.S. Lee, W.M. Kim, J.W. Lee, S.H. Cho, J.Y. Huh, Appl. Phys. Lett. 85, 2782 (2004)ADSGoogle Scholar
  73. 73.
    K. Kishimoto, M. Tsukamoto, T. Koyanagi, J. Appl. Phys. 92, 5331 (2002)ADSGoogle Scholar
  74. 74.
    E.I. Rogacheva, O.N. Nashchekina, S.N. Grigorov, M.A. Us, M.S. Dresselhaus, S.B. Cronin, Nanotechnology 14, 53 (2003)ADSGoogle Scholar
  75. 75.
    E.I. Rogacheva, O.N. Nashchekina, A.V. Meriuts, S.G. Lyubchenko, M.S. Dresselhaus, G. Dresselhaus, Appl. Phys. Lett. 86, 063103 (2005)ADSGoogle Scholar
  76. 76.
    E.I. Rogacheva, S.N. Grigorov, O.N. Nashchekina, T.V. Tavrina, S.G. Lyubchenko, AYu. Sipatov, V.V. Volobuev, A.G. Fedorov, M.S. Dresselhaus, Thin Solid Films 493, 41 (2005)ADSGoogle Scholar
  77. 77.
    X. Qiu, Y. Lou, A.C.S. Samia, A. Devadoss, J.D. Burgess, S. Dayal, C. Burda, Angew. Chem. Int. Ed. 44, 5855 (2005)Google Scholar
  78. 78.
    C. Wang, G. Zhang, S. Fan, Y. Li, J. Phys. Chem. Solids 62, 1957 (2001)ADSGoogle Scholar
  79. 79.
    B. Poudel, W.Z. Wang, D.Z. Wang, J.Y. Huang, Z.F. Ren, J. Nanosci. Nanotechnol. 6, 1050 (2006)Google Scholar
  80. 80.
    B. Zhang, J. He, T.M. Tritt, Appl. Phys. Lett. 88, 043119 (2006)ADSGoogle Scholar
  81. 81.
    W. Heiss, H. Groiss, E. KaQWmann, G. Hesser, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, M. Yano, Appl. Phys. Lett. 88, 192109 (2006)ADSGoogle Scholar
  82. 82.
    B.A. Akimov, V.A. Bogoyavlenskiy, L.I. Ryabova, V.N. Vasil’kov, Phys. Rev. B 61, 16045 (2000)ADSGoogle Scholar
  83. 83.
    Ya. A. Ugai, A.M. Samoilov, M.K. Sharov, O.B. Yatsenko, B.A. Akimov, Inorg. Mater. 38, 12 (2002)Google Scholar
  84. 84.
    Ya. A. Ugai, A.M. Samoilov, S.A. Buchnev, Yu. V. Synorov, M.K. Sharov, Inorg. Mater. 38, 450 (2002)Google Scholar
  85. 85.
    A.M. Samoilov, S.A. Buchnev, YuV Synorov, B.L. Agapov, A.M. Khoviv, Inorg. Mater. 39, 1132 (2003)Google Scholar
  86. 86.
    A.M. Samoilov, S.A. Buchnev, E.A. Dolgopolova, YuV Synorov, A.M. Khoviv, Inorg. Mater. 40, 349 (2004)Google Scholar
  87. 87.
    H. Murakami, W. Hattori, R. Aoki, Phys. C 269, 83 (1996)ADSGoogle Scholar
  88. 88.
    H. Murakami, W. Hattori, Y. Mizomata, R. Aoki, Phys. C 273, 41 (1996)ADSGoogle Scholar
  89. 89.
    H. Murakami, R. Aoki, K. Sakai, Thin Solid Films 27, 343 (1999)Google Scholar
  90. 90.
    B.A. Volkov, L.I. Ryabova, D.R. Khokhlov, Phys. Usp. 45, 819 (2002). (and references therein)ADSGoogle Scholar
  91. 91.
    F. Hüe, M. Hÿtch, H. Bender, F. Houdellier, A. Claverie, Phys. Rev. Lett. 100, 156602 (2008)ADSGoogle Scholar
  92. 92.
    S. Banerjee, K.A. Shore, C.J. Mitchell, J.L. Sly, M. Missous, IEE Proc. Circuits Devices Syst. 152, 497 (2005)Google Scholar
  93. 93.
    M. Razeghi, A. Evans, S. Slivken, J.S. Yu, J.G. Zheng, V.P. Dravid, Proc. SPIE 5840, 54 (2005)ADSGoogle Scholar
  94. 94.
    R.A. Stradling, Semicond. Sci. Technol. 6, C52 (1991)Google Scholar
  95. 95.
    P.K. Weimer, Proc. IEEE 52, 608 (1964)Google Scholar
  96. 96.
    G. Ribakovs, A.A. Gundjian, IEEE J. Quant. Electron. QE-14, 42 (1978)Google Scholar
  97. 97.
    S.K. Dey, J. Vac. Sci. Technol. 10, 227 (1973)ADSGoogle Scholar
  98. 98.
    S.J. Lynch, Thin Solid Films 102, 47 (1983)ADSGoogle Scholar
  99. 99.
    V.V. Kudzin, V.S. Kulakov, D.R. Pape’, S.V. Kulakov, V.V. Molotok, IEEE. Ultrason. Symp. 1, 749 (1997)Google Scholar
  100. 100.
    F. Hatami, V. Lordi, J.S. Harris, H. Kostial, W.T. Masselink, J. Appl. Phys. 97, 096106 (2005)ADSGoogle Scholar
  101. 101.
    B.W. Wessels, J. Electrochem. Soc. 722, 402 (1975)Google Scholar
  102. 102.
    D.W.L. Tolfree, J. Sci. Instrum. 41, 788 (1964)ADSGoogle Scholar
  103. 103.
    P.B. Hart, Proc. IEEE 61, 880 (1973)Google Scholar
  104. 104.
    M.A. Hines, G.D. Scholes, Adv. Mater. 15, 1844 (2003)Google Scholar
  105. 105.
    C.A. Wang, R.K. Huang, D.A. Shiau, M.K. Connors, P.G. Murphy, P.W. O’Brien, A.C. Anderson, D.M. DePoy, G. Nichols, M.N. Palmisiano, Appl. Phys. Lett. 83, 1286 (2003)ADSGoogle Scholar
  106. 106.
    C.W. Hitchcock, R.J. Gutmann, J.M. Borrego, I.B. Bhat, G.W. Charache, IEEE Trans. Electron. Devices 46, 2154 (1999)ADSGoogle Scholar
  107. 107.
    H.J. Goldsmid, R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954)ADSGoogle Scholar
  108. 108.
    F.D. Rosi, B. Abeles, R.V. Jensen, J. Phys. Chem. Sol. 10, 191 (1959)ADSGoogle Scholar
  109. 109.
    T.M. Tritt (ed.), Semiconductors and Semimetals, vol. 69, 70 and 71: Recent Trends in Thermoelectric Materials Research I, II and III (Academic Press, New York, 2000)Google Scholar
  110. 110.
    D.M. Rowe (ed.), CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)Google Scholar
  111. 111.
    D.M. Rowe, C.M. Bhandari, Modern Thermoelectrics (Reston Publishing Company, Virginia, 1983)Google Scholar
  112. 112.
    D.M. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, 2006)Google Scholar
  113. 113.
    H. Choi, M. Chang, M. Jo, S.J. Jung, H. Hwang, Electrochem. Solid-State Lett. 11, H154 (2008)Google Scholar
  114. 114.
    S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Appl. Opt. 35, 1956 (1996)ADSGoogle Scholar
  115. 115.
    H.W.H. Lee, B.R. Taylor, S.M. Kauzlarich, Nonlinear Optics: Materials, Fundamentals, and Applications 12, (Technical Digest, 2000)Google Scholar
  116. 116.
    E. Brundermann, U. Heugen, A. Bergner, R. Schiwon, G.W. Schwaab, S. Ebbinghaus, D.R. Chamberlin, E.E. Haller, M. Havenith, in 29th International Conference on Infrared and MillimeterWaves and 12th International Conference on Terahertz, Electronics, vol 283 (2004)Google Scholar
  117. 117.
    A.N. Baranov, T.I. Voronina, N.S. Zimogorova, L.M. Kauskaya, Y.P. Yakoviev, Sov. Phys. Semicond. 19, 1676 (1985)Google Scholar
  118. 118.
    M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata, Jpn. J. Appl. Phys. 17, 2091 (1978)ADSGoogle Scholar
  119. 119.
    F.S. Yuang, Y.K. Su, N.Y. Li, Jpn. J. Appl. Phys. 30, 207 (1991)ADSGoogle Scholar
  120. 120.
    F.S. Yuang, Y.K. Su, N.Y. Li, K.J. Gan, J. Appl. Phys. 68, 6383 (1990)ADSGoogle Scholar
  121. 121.
    Y.K. Su, S.M. Chen, J. Appl. Phys. 73, 8349 (1993)ADSGoogle Scholar
  122. 122.
    S.K. Haywood, A.B. Henriques, N.J. Mason, R.J. Nicholas, P.J. Walker, Semicond. Sci. Technol. 3, 315 (1988)ADSGoogle Scholar
  123. 123.
    A.N. Chakravarti, K.P. Ghatak, K.K. Ghosh, S. Ghosh, H.M. Mukherjee, Phys. Stat. Sol. B 108, 609 (1981)ADSGoogle Scholar
  124. 124.
    K.P. Ghatak, M. Mondal, Z. fur Physik B 64, 223 (1986)Google Scholar
  125. 125.
    P.K. Chakraborty, A. Sinha, S. Bhattacharya, K.P. Ghatak, Physica B 390, 325 (2007)ADSGoogle Scholar
  126. 126.
    P.K. Chakraborty, K.P. Ghatak, J. Phys. Chem. Solids 62, 1061 (2001)ADSGoogle Scholar
  127. 127.
    P.K. Chakraborty, K.P. Ghatak, Phys. Letts. A 288, 335 (2001)ADSGoogle Scholar
  128. 128.
    P.K. Chakraborty, K.P. Ghatak, Phys. D, Appl. Phys 32, 1999 (2001)Google Scholar
  129. 129.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Wiley, New York, 1964)zbMATHGoogle Scholar
  130. 130.
    I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1965)Google Scholar
  131. 131.
    V. Heine, Proc. Phys. Soc. 81, 300 (1963)ADSzbMATHGoogle Scholar
  132. 132.
    J.N. Schulman, Y.C. Chang, Phys. Rev. B 24, 4445 (1981)ADSGoogle Scholar
  133. 133.
    S. Adachi, J. Appl. Phys. 58, R11 (1985)ADSGoogle Scholar
  134. 134.
    K.P. Ghatak, J.P. Banerjee, D. Bhattacharya, Nanotechnology 7, 110 (1996)ADSGoogle Scholar
  135. 135.
    S. Bhattacharya, S. Choudhury, K.P Ghatak, Superlatt. and Microstruct. 48, 257 (2010)Google Scholar
  136. 136.
    K.P. Ghatak, S. Bhattacharya, S. Pahari, D. De, S. Ghosh, M. Mitra, Ann. Phys. 17, 195 (2008)Google Scholar
  137. 137.
    S. Pahari, S. Bhattacharya, K.P Ghatak, J.Comput. Theor. Nanosci. (Invited Paper), 6, 2088 (2009)Google Scholar
  138. 138.
    M. Krieehbaum, P. Kocevar, H. Pascher, G. Bauer, IEEE QE 24, 1727 (1988)Google Scholar
  139. 139.
    M.S. Lundstrom, J. Guo, Nanoscale Transistors, Device Physics, Modeling and Simulation (Springer, USA, 2006)Google Scholar
  140. 140.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)Google Scholar
  141. 141.
    X. Yang, J. Ni, Phys. Rev. B 72, 195426 (2005)ADSGoogle Scholar
  142. 142.
    W. Mintmire, C.T. White, Phys. Rev. Letts. 81, 2506 (1998)ADSGoogle Scholar
  143. 143.
    G.L. Bir, G.E. Pikus, Symmetry and Strain—Induced effects in Semiconductors (Nauka, Russia, 1972)Google Scholar
  144. 144.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (B) 135, K21 (1986)ADSGoogle Scholar
  145. 145.
    C.C. Wu, C.J. Lin, J. Low, Temp. Phys. 57, 469 (1984)ADSGoogle Scholar
  146. 146.
    Y. Yamada, J. Phys. Soc. Jpn. 35, 1600 (1973)ADSGoogle Scholar
  147. 147.
    A.N. Chakravarti, K.P. Ghatak, K.K. Ghosh, S. Ghosh, H.M. Mukherjee, Phys. Stat. Sol. B 118, 843 (1983)ADSGoogle Scholar
  148. 148.
    S. Bhattacharya, D. De, S.M. Adhikari, K.P. Ghatak, Superlatt. and Microstruc. 51, 203 (2012)Google Scholar
  149. 149.
    K.P. Ghatak, M. Mondal, Z.F. Naturforschung 41A, 821 (1986)Google Scholar
  150. 150.
    A.N. Chakravarti, A.K. Choudhury, K.P. Ghatak, S. Ghosh, A. Dhar, Appl. Phys. 25, 105 (1981)ADSGoogle Scholar
  151. 151.
    P.K. Chakraborty, G.C. Datta, K.P. Ghatak, Phys. Scrip. 68, 368 (2003)ADSzbMATHGoogle Scholar
  152. 152.
    A.N. Chakravarti, K.P. Ghatak, A. Dhar, K.K. Ghosh, S. Ghosh, Appl. Phys. A26, 165 (1981)ADSGoogle Scholar
  153. 153.
    K.P. Ghatak, S. Bhattacharya, S.K. Biswas, A. Dey, A.K. Dasgupta, Phys. Scrip. 75, 820 (2007)ADSzbMATHGoogle Scholar
  154. 154.
    K.P. Ghatak, M. Mondal, ZF Physik B. B69, 471 (1988)Google Scholar
  155. 155.
    A.N. Chakravarti, K.P. Ghatak, K.K. Ghosh, S. Ghosh, A. Dhar, ZF Physik B. 47, 149 (1982)Google Scholar
  156. 156.
    H.A. Lyden, Phys. Rev. 135, A514 (1964)ADSGoogle Scholar
  157. 157.
    E.D Palik, G.B. Wright, in Semiconductors and Semimetals, ed. by R.K Willardson and A.C Beer 3, (Academic Press, New York, USA,1967), p. 421Google Scholar
  158. 158.
    M. Mondal, K.P.Ghatak, Phys. Letts. 131 A, 529 (1988)Google Scholar
  159. 159.
    K.P. Ghatak, B. Mitra, Int. J. Electron. 72, 541 (1992)Google Scholar
  160. 160.
    B. Mitra, A. Ghoshal, K.P. Ghatak, Nouvo Cimento D 12D, 891 (1990)ADSGoogle Scholar
  161. 161.
    K.P. Ghatak, S.N. Biswas, Nonlinear Opt Quantum Opt 4, 347 (1993)Google Scholar
  162. 162.
    K.P.Ghatak, A. Ghoshal. B. Mitra., Nouvo Cimento 14D, 903 (1992)Google Scholar
  163. 163.
    K.P. Ghatak, A. Ghoshal, B. Mitra, Nouvo Cimento. 13D, 867 (1991)ADSGoogle Scholar
  164. 164.
    B. Mitra, K.P. Ghatak, Solid State Electron. 32, 177 (1989)ADSGoogle Scholar
  165. 165.
    M. Mondal, N. Chattapadhyay, K.P. Ghatak, J. Low Temp. Phys. 66, 131 (1987)ADSGoogle Scholar
  166. 166.
    P.N. Hai, W.M. Chen, I.A. Buyanova, H.P. Xin, C.W. Tu, Appl. Phys. Lett. 77, 1843 (2000)ADSGoogle Scholar
  167. 167.
    D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984)ADSGoogle Scholar
  168. 168.
    P. Perlin, E. Litwin-Staszewska, B. Suchanek, W. Knap, J. Camassel, T. Suski, R. Piotrzkowski, I. Grzegory, S. Porowski, E. Kaminska, J.C. Chervin, Appl. Phys. Lett. 68, 1114 (1996)ADSGoogle Scholar
  169. 169.
    G.E. Smith, Phys. Rev. Lett. 9, 487 (1962)ADSGoogle Scholar
  170. 170.
    D. Schneider, D. Rurup, A. Plichta, H.-U. Grubert, A. Schlachetzki, K. Hansen, Z. Phys. B 95, 281 (1994)ADSGoogle Scholar
  171. 171.
    F. Masia, G. Pettinari, A. Polimeni, M. Felici, A. Miriametro, M. Capizzi, A. Lindsay, S.B. Healy, E.P. O’Reilly, A. Cristofoli, G. Bais, M. Piccin, S. Rubini, F. Martelli, A. Franciosi, P.J. Klar, K. Volz, W. Stolz, Phys. Rev. B 73, 073201 (2006)ADSGoogle Scholar
  172. 172.
    V.K. Arora, H. Jeafarian, Phys. Rev. B. 13, 4457 (1976)ADSGoogle Scholar
  173. 173.
    S.E. Ostapov, V.V. Zhikharevich, V.G. Deibuk, Semicond. Phys. Quan. Electron. Optoelectron. 9, 29 (2006)Google Scholar
  174. 174.
    M.J. Aubin, L.G. Caron, J.P. Jay Gerin, Phys. Rev. B 15, 3872 (1977)ADSGoogle Scholar
  175. 175.
    S.L. Sewall, R.R. Cooney, P. Kambhampati, Appl. Phys. Lett. 94, 243116 (2009)ADSGoogle Scholar
  176. 176.
    K. Tanaka, N. Kotera; in 20th International Conference on Indium Phosphide and Related Materials, (Versailles, France, 2008), pp. 1–4Google Scholar
  177. 177.
    M. Singh, P.R. Wallace, S.D. Jog, J. Erushanov, J. Phys. Chem. Solids 45, 409 (1984)ADSGoogle Scholar
  178. 178.
    W. Zawadzki, Adv. Phys. 23, 435 (1974)ADSGoogle Scholar
  179. 179.
    K.P. Ghatak, M. Mondal, J. Appl. Phys. 69, 1666 (1991)ADSGoogle Scholar
  180. 180.
    K.P. Ghatak, B. Mitra, D.K. Basu, B. Nag, Nonlinear Opt. 17, 171 (1997)Google Scholar
  181. 181.
    B.R. Nag, A.N. Chakravarti, Solid State Electron. 18, 109 (1975)ADSGoogle Scholar
  182. 182.
    B.R. Nag, A.N. Chakravarti, Phys. Stal Sol. (A) 22, K153 (1974)ADSGoogle Scholar
  183. 183.
    J.O. Dimmock, in The Physics of Semimetals and Narrowgap Semiconductors, ed. by D.L. Carter, R.T. Bates (Pergamon Press, Oxford, 1971)Google Scholar
  184. 184.
    D.G. Seiler, B.D. Bajaj, A.E. Stephens, Phys. Rev. B 16, 2822 (1977)ADSGoogle Scholar
  185. 185.
    A.V. Germaneko, G.M. Minkov, Phys. Stat. Sol. (B) 184, 9 (1994)ADSGoogle Scholar
  186. 186.
    G.L. Bir, G.E. Pikus, Symmetry and Strain—Induced effects in Semiconductors (Nauka, Russia, 1972)Google Scholar
  187. 187.
    J. Bouat, J.C. Thuillier, Surf. Sci. 73, 528 (1978)ADSGoogle Scholar
  188. 188.
    G.J. Rees, Physics of Compounds, in Proceedings of the 13th International Conference ed. By F.G. Fumi (North Holland Company, 1976), p.1166Google Scholar
  189. 189.
    P.R. Entage, Phys. Rev. 138, A246 (1965)ADSGoogle Scholar
  190. 190.
    M. Stordeur, W. Kuhnberger, Phys. Stat. Sol. 69, 377 (1975)Google Scholar
  191. 191.
    D.R. Lovett, Semimetals and Narrow-Bandgap Semiconductor (Pion Limited, UK, 1977)Google Scholar
  192. 192.
    H. Kohler, Phys. Stat. Sol. 74, 591 (1976)ADSGoogle Scholar
  193. 193.
    M. Cardona, W. Paul, H. Brooks Helv, Acta Phys. 33, 329 (1960)Google Scholar
  194. 194.
    A.F. Gibson in Proceeding of International School of Physics, ENRICO FEPMI, course XIII, ed. By R.A. Smith (Academic Press, New York, 1963), p.171Google Scholar
  195. 195.
    C.C. Wang, N.W. Ressler, Phys. Rev. 2, 1827 (1970)ADSGoogle Scholar
  196. 196.
    P.C. Mathur, S. Jain, Phys. Rev. 19, 1359 (1979)Google Scholar
  197. 197.
    E.L. Ivchenko, G.E. Pikus Sov, Phys. Semicond. 13, 579 (1979)Google Scholar
  198. 198.
    M.H. Cohen, Phys. Rev. 121, 387 (1961)ADSzbMATHGoogle Scholar
  199. 199.
    J.W. McClure, K.H. Choi, Solid State Comm. 21, 1015 (1977)ADSGoogle Scholar
  200. 200.
    E. Bangert, P. Kastner, Phys. Stat. Sol. (B) 61, 503 (1974)ADSGoogle Scholar
  201. 201.
    G.M.T. Foley, P.N. Langenberg, Phys. Rev. B 15B, 4850 (1977)ADSGoogle Scholar
  202. 202.
    V.I. Ivanov-Omskii, A.S. Mekhtiev, S.A. Rustambekova, E.N. Ukraintsev, Phys. Stat. Sol. (B) 119, 159 (1983)Google Scholar
  203. 203.
    D.G. Seiler, W.M. Beeker, L.M. Roth, Phys. Rev. 1, 764 (1970)ADSGoogle Scholar
  204. 204.
    H.I. Zhang, Phys. Rev. B 1, 3450 (1970)ADSGoogle Scholar
  205. 205.
    U. Rossler, Solid State Commun. 49, 943 (1984)ADSGoogle Scholar
  206. 206.
    J. Johnson, D.H. Dickey, Phys. Rev. 1, 2676 (1970)ADSGoogle Scholar
  207. 207.
    V.G. Agafonov, P.M. Valov, B.S. Ryvkin, I.D. Yarashetskin, Sov. Phys. Semiconduct. 12, 1182 (1978)Google Scholar
  208. 208.
    L.A. Vassilev, Phys. State Sol. (B) 121, 203 (1984)ADSGoogle Scholar
  209. 209.
    N.S. Averkiev, V.M. Asnin, A.A. Bakun, A.M. Danishevskii, E.L. Ivchenko, G.E. Pikus, A.A. Rogachev, Sov. Phys. Semicond. 18, 379 (1984)Google Scholar
  210. 210.
    R.W. Cunningham, Phys. Rev. 167, 761 (1968)ADSGoogle Scholar
  211. 211.
    A.I. Yekimov, A.A. Onushchenko, A.G. Plyukhin, A.L. Efros, J. Expt. Theor. Phys. 88, 1490 (1985)Google Scholar
  212. 212.
    B.J. Roman, A.W. Ewald, Phys. Rev. B5, 3914 (1972)ADSGoogle Scholar
  213. 213.
    G.P. Chuiko, Sov. Phys. Semiconduct. 19, 1381 (1985)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations