Skip to main content

Motion Is Inevitable: The Impact of Motion Correction Schemes on HARDI Reconstructions

  • Conference paper
  • First Online:
Computational Diffusion MRI

Abstract

Diffusion weighted imaging (DWI) is known to be prone to artifacts related to motion originating from subject movement, cardiac pulsation and breathing, but also to mechanical issues such as table vibrations. Given the necessity for rigorous quality control and motion correction, users are often left to use simple heuristics to select correction schemes, but do not fully understand the consequences of such choices on the final analysis, moreover being at risk to introduce confounding factors in population studies. This paper reports work in progress towards a comprehensive evaluation framework of HARDI motion correction to support selection of optimal methods to correct for even subtle motion. We make use of human brain HARDI data from a well controlled motion experiment to simulate various degrees of motion corruption. Choices for correction include exclusion or registration of motion corrupted directions, with different choices of interpolation. The comparative evaluation is based on studying effects of motion correction on three different metrics commonly used when using DWI data, including similarity of fiber orientation distribution functions (fODFs), global brain connectivity via Graph Diffusion Distance (GDD), and reproducibility of prominent and anatomically defined fiber tracts. Effects of various settings are systematically explored and illustrated, leading to the somewhat surprising conclusion that a best choice is the alignment and interpolation of all DWI directions, not only directions considered as corrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The NIH funded Autism Centers of Excellence Infant Brain Imaging Study (ACE-IBIS) Network: Clinical Sites: University of North Carolina: J. Piven (IBIS Network PI), H.C. Hazlett, C. Chappell; University of Washington: S. Dager, A. Estes, D. Shaw; Washington University: K. Botteron, R. McKinstry, J. Constantino, J. Pruett; Children’s Hospital of Philadelphia: R. Schultz, S. Paterson; University of Alberta: L. Zwaigenbaum; Data Coordinating Center: Montreal Neurological Institute: A.C. Evans, D.L. Collins, G.B. Pike, V. Fonov, P. Kostopoulos; Samir Das; Image Processing Core: University of Utah: G. Gerig; University of North Carolina: M. Styner; Statistical Analysis Core: University of North Carolina: H. Gu.

References

  1. Pierpaoli, C.: Artifacts in diffusion MRI. In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods and Applications, pp. 303–318. Oxford University Press, New York (2010)

    Chapter  Google Scholar 

  2. Tournier, J.D., Mori, S., Leemans, A.: Diffusion tensor imaging and beyond. Magn. Reson. Med. 65(6), 1532–1556 (2011)

    Article  Google Scholar 

  3. Caruyer, E., Aganj, I., Lenglet, C., Sapiro, G., Deriche, R.: Motion detection in diffusion MRI via online odf estimation. Int. J. Biomed. Imaging 2013, 849363 (2013)

    Google Scholar 

  4. Kober, T., Gruetter, R., Krueger, G.: Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain. Neuroimage 59(1), 389–398 (2012)

    Article  Google Scholar 

  5. Liu, Z., Wang, Y., Gerig, G., Gouttard, S., Tao, R., Fletcher, T., Styner, M.: Quality control of diffusion weighted images. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp. 76280J–76280J (2010)

    Google Scholar 

  6. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  7. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  8. Pierpaoli, C., Walker, L., Irfanoglu, M., Barnett, A., Basser, P., Chang, L., Koay, C., Pajevic, S., Rohde, G., Sarlls, J., et al.: Tortoise: an integrated software package for processing of diffusion MRI data. Proc. Int. Soc. Magn. Reson. Med. 18, 1597 (2010)

    Google Scholar 

  9. Oguz, I., Farzinfar, M., Matsui, J., Budin, F., Liu, Z., Gerig, G., Johnson, H.J., Styner, M.A.: Dtiprep: quality control of diffusion-weighted images. Front. Neuroinform. 8, 4 (2014)

    Article  Google Scholar 

  10. Rohde, G.K., Barnett, A.S., Basser, P.J., Pierpaoli, C.: Estimating intensity variance due to noise in registered images: applications to diffusion tensor MRI. Neuroimage 26(3), 673–684 (2005)

    Article  Google Scholar 

  11. Oishi, K., Faria, A., Jiang, H., Li, X., Akhter, K., Zhang, J., Hsu, J.T., Miller, M.I., van Zijl, P., Albert, M., et al.: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer’s disease participants. Neuroimage 46(2), 486–499 (2009)

    Article  Google Scholar 

  12. Tournier, J., Yeh, C.H., Calamante, F., Cho, K.H., Connelly, A., Lin, C.P., et al.: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42(2), 617–625 (2008)

    Article  Google Scholar 

  13. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8(8) (2014)

    Google Scholar 

  14. Garyfallidis, E.: Towards an accurate brain tractography. Ph.D. thesis, University of Cambridge (2012)

    Google Scholar 

  15. Zhang, Y., Zhang, J., Oishi, K., Faria, A.V., Jiang, H., Li, X., Akhter, K., Rosa-Neto, P., Pike, G.B., Evans, A., et al.: Atlas-guided track reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52(4), 1289–1301 (2010)

    Article  Google Scholar 

  16. Cohen-Adad, J., Descoteaux, M., Wald, L.L.: Quality assessment of high angular resolution diffusion imaging data using bootstrap on q-ball reconstruction. J. Magn. Reson. Imaging 33(5), 1194–1208 (2011) 1194–1208

    Google Scholar 

  17. Hammond, D.K., Gur, Y., Johnson, C.R.: Graph diffusion distance: a difference measure for weighted graphs based on the graph laplacian exponential kernel. In: Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE, Austin, Dec 2013, pp. 419–422

    Google Scholar 

  18. Landis, J.R., Koch, G.G., et al.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NIH grants ACE RO1 HD 055741 and NA-MIC Roadmap U54 EB005149 and the cocaine infant project (CAMID NIDA DA022446-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shireen Elhabian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Elhabian, S. et al. (2014). Motion Is Inevitable: The Impact of Motion Correction Schemes on HARDI Reconstructions. In: O'Donnell, L., Nedjati-Gilani, G., Rathi, Y., Reisert, M., Schneider, T. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-11182-7_15

Download citation

Publish with us

Policies and ethics