Advertisement

Attractor Metadynamics in Adapting Neural Networks

  • Claudius Gros
  • Mathias Linkerhand
  • Valentin Walther
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8681)

Abstract

Slow adaption processes, like synaptic and intrinsic plasticity, abound in the brain and shape the landscape for the neural dynamics occurring on substantially faster timescales. At any given time the network is characterized by a set of internal parameters, which are adapting continuously, albeit slowly. This set of parameters defines the number and the location of the respective adiabatic attractors. The slow evolution of network parameters hence induces an evolving attractor landscape, a process which we term attractor metadynamics. We study the nature of the metadynamics of the attractor landscape for several continuous-time autonomous model networks. We find both first- and second-order changes in the location of adiabatic attractors and argue that the study of the continuously evolving attractor landscape constitutes a powerful tool for understanding the overall development of the neural dynamics.

Keywords

adiabatic attractors attractor metadynamics neural networks adaption homeostasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Izhikevich, E.M.: Dynamical systems in neuroscience. The MIT press (2007)Google Scholar
  2. 2.
    Gros, C.: Complex and adaptive dynamical systems: A primer. Springer (2013)Google Scholar
  3. 3.
    Honey, C.J., Kötter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences 104(24), 10240–10245 (2007)CrossRefGoogle Scholar
  4. 4.
    Kiebel, S.J., Daunizeau, J., Friston, K.J.: A hierarchy of time-scales and the brain. PLoS Computational Biology 4(11), e1000209 (2008)Google Scholar
  5. 5.
    Ulanovsky, N., Las, L., Farkas, D., Nelken, I.: Multiple time scales of adaptation in auditory cortex neurons. The Journal of Neuroscience 24(46), 10440–10453 (2004)CrossRefGoogle Scholar
  6. 6.
    Marder, E., Goaillard, J.M.: Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience 7(7), 563–574 (2006)CrossRefGoogle Scholar
  7. 7.
    Turrigiano, G.G., Nelson, S.B.: Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience 5(2), 97–107 (2004)CrossRefGoogle Scholar
  8. 8.
    Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learning & Memory 10(6), 456–465 (2003)CrossRefGoogle Scholar
  9. 9.
    Echegoyen, J., Neu, A., Graber, K.D., Soltesz, I.: Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence. PloS one 2(8), e700 (2007)Google Scholar
  10. 10.
    O’Leary, T., Wyllie, D.J.: Neuronal homeostasis: time for a change? The Journal of Physiology 589(20), 4811–4826 (2011)Google Scholar
  11. 11.
    Ge, S., Hang, C.C., Lee, T.H., Zhang, T.: Stable adaptive neural network control. Springer Publishing Company, Incorporated (2010)Google Scholar
  12. 12.
    Beer, R.D.: On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior 3(4), 469–509 (1995)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior 1(1), 91–122 (1992)CrossRefGoogle Scholar
  14. 14.
    Triesch, J.: A gradient rule for the plasticity of a neuron’s intrinsic excitability. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 65–70. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Marković, D., Gros, C.: Intrinsic adaptation in autonomous recurrent neural networks. Neural Computation 24(2), 523–540 (2012)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Jaynes, E.T.: Information theory and statistical mechanics. Physical Review 106(4), 620 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Linkerhand, M., Gros, C.: Self-organized stochastic tipping in slow-fast dynamical systems. Mathematics and Mechanics of Complex Systems 1(2), 129–147 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Steil, J.J.: Online reservoir adaptation by intrinsic plasticity for backpropagation–decorrelation and echo state learning. Neural Networks 20(3), 353–364 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Markovic, D., Gros, C.: Self-Organized Chaos through Polyhomeostatic Optimization. Physical Review Letters 105(6) (August 2010)Google Scholar
  20. 20.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79(8), 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Gros, C.: Neural networks with transient state dynamics. New Journal of Physics 9(4), 109 (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Russo, E., Namboodiri, V.M., Treves, A., Kropff, E.: Free association transitions in models of cortical latching dynamics. New Journal of Physics 10(1), 15008 (2008)CrossRefGoogle Scholar
  23. 23.
    Gros, C.: Cognitive computation with autonomously active neural networks: An emerging field. Cognitive Computation 1(1), 77–90 (2009)CrossRefGoogle Scholar
  24. 24.
    Gros, C., Kaczor, G.: Semantic learning in autonomously active recurrent neural networks. Logic Journal of IGPL 18(5), 686–704 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Linkerhand, M., Gros, C.: Generating functionals for autonomous latching dynamics in attractor relict networks. Scientific Reports 3 (2013)Google Scholar
  26. 26.
    Beer, R.D.: Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3), 91–99 (2000)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Deco, G., Rolls, E.T., Romo, R.: Synaptic dynamics and decision making. Proceedings of the National Academy of Sciences 107(16), 7545–7549 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Claudius Gros
    • 1
  • Mathias Linkerhand
    • 1
  • Valentin Walther
    • 1
  1. 1.Institute for Theoretical PhysicsGoethe University FrankfurtGermany

Personalised recommendations