Skip to main content

How Visual Attention and Suppression Facilitate Object Recognition?

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8681))

Abstract

Visual attention can support object recognition by selecting the relevant target information in the huge amount of sensory data, especially important in scenes composed of multiple objects. Here we demonstrate how attention in a biologically plausible and neuro-computational model of visual perception facilitates object recognition in a robotic real world scenario. We will point out that it is not only important to select the target information, but rather to explicitly suppress the distracting sensory data. We found that suppressing the features of each distractor is not sufficient to achieve robust recognition. Instead, we also have to suppress the location of each distractor. To demonstrate the effect of this spatial suppression, we disable this property and show that the recognition accuracy drops. By this, we show the interplay between attention and suppression in a real world object recognition task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, M., Gibaldi, A., Beuth, F., Duran, A.J., Canessa, A., Chessa, M., Hamker, F., Chinellato, E., Sabatini, S.P.: A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot. Accepted for IEEE Trans. Auton. Mental Develop., 1–15 (2014)

    Google Scholar 

  2. Beuth, F., Wiltschut, J., Hamker, F.: Attentive Stereoscopic Object Recognition. In: Villmann, T., Schleif, F.-M. (eds.) Workshop NCNC 2010, p. 41 (2010)

    Google Scholar 

  3. Frintrop, S., Nuchter, A.: Saliency-based object recognition in 3D data. In: IROS 2004, pp. 2167–2172 (2004)

    Google Scholar 

  4. Hamker, F.H.: The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. J. Comput. Vis. Image Underst. 100, 64–106 (2005)

    Article  Google Scholar 

  5. Hamker, F.H.: The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex 15(4), 431–447 (2005)

    Article  Google Scholar 

  6. Hasegawa, R.P., Peterson, B.W., Goldberg, M.E.: Prefrontal neurons coding suppression of specific saccades. Neuron 43(3), 415–425 (2004)

    Article  Google Scholar 

  7. Logothetis, N., Pauls, J., Poggio, T.: Spatial Reference Frames for Object Recognition. Tuning for Rotations in Depth (1995)

    Google Scholar 

  8. Miau, F., Papageorgiou, C., Itti, L.: Neuromorphic algorithms for computer vision and attention. In: ISOST 2001, vol. 4479, pp. 12–23 (2001)

    Google Scholar 

  9. Mitri, S., Frintrop, S.: Robust object detection at regions of interest with an application in ball recognition. In: ICRA 2005, pp. 126–131 (April 2005)

    Google Scholar 

  10. Rasolzadeh, B., Bjorkman, M., Huebner, K., Kragic, D.: An Active Vision System for Detecting, Fixating and Manipulating Objects in the Real World. Int. J. Robot. Res. 29(2-3), 133–154 (2009)

    Article  Google Scholar 

  11. Reynolds, J.H., Heeger, D.J.: The normalization model of attention. Neuron 61(2), 168–185 (2009)

    Article  Google Scholar 

  12. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)

    Article  Google Scholar 

  13. Sabatini, S.P., Gastaldi, G., Solari, F., Pauwels, K., Van Hulle, M.M., Diaz, J., Ros, E., Pugeault, N., Krüger, N.: A compact harmonic code for early vision based on anisotropic frequency channels. J. Comput. Vis. and Image Underst. 114(6), 681–699 (2010)

    Article  Google Scholar 

  14. Schall, J.D.: Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J. Neurophysiol. 66(2), 559–579 (1991)

    MathSciNet  Google Scholar 

  15. Sigala, N., Gabbiani, F., Logothetis, N.K.: Visual categorization and object representation in monkeys and humans. J. Cognitive Neurosci. 14(2), 187–198 (2002)

    Article  Google Scholar 

  16. Teichmann, M., Wiltschut, J., Hamker, F.H.: Learning invariance from natural images inspired by observations in the primary visual cortex. Neural Computation 24(5), 1271–1296 (2012)

    Article  Google Scholar 

  17. Treue, S., Trujillo, J.: Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399(6736), 575–579 (1999)

    Article  Google Scholar 

  18. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19(9), 1395–1407 (2006)

    Article  MATH  Google Scholar 

  19. Wischnewski, M., Belardinelli, A., Schneider, W.X., Steil, J.J.: Where to Look Next? Combining Static and Dynamic Proto-objects in a TVA-based Model of Visual Attention. Cognitive Computation 2(4), 326–343 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Beuth, F., Jamalian, A., Hamker, F.H. (2014). How Visual Attention and Suppression Facilitate Object Recognition?. In: Wermter, S., et al. Artificial Neural Networks and Machine Learning – ICANN 2014. ICANN 2014. Lecture Notes in Computer Science, vol 8681. Springer, Cham. https://doi.org/10.1007/978-3-319-11179-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11179-7_58

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11178-0

  • Online ISBN: 978-3-319-11179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics