Skip to main content

Variational EM Learning of DSBNs with Conditional Deep Boltzmann Machines

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2014 (ICANN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8681))

Included in the following conference series:

  • 4294 Accesses

Abstract

Variational EM (VEM) is an efficient parameter learning scheme for sigmoid belief networks with many layers of latent variables. The choice of the inference model that forms the variational lower bound of the log likelihood is critical in VEM learning. The mean field approximations and wake-sleep algorithm use simple models that are computationally efficient, but may be poor approximations to the true posterior densities when the latent variables have strong mutual dependencies. In this paper, we describe a variational EM learning method of DSBNs with a new inference model known as the conditional deep Boltzmann machine (cDBM), which is an undirected graphical model capable of representing complex dependencies among latent variables. We show that this algorithm does not require the computation of the intractable partition function in the undirected cDBM model, and can be accelerated with contrastive learning. Performances of the proposed method are evaluated and compared on handwritten digit data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards ai. In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large-Scale Kernel Machines. MIT Press (2007)

    Google Scholar 

  2. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley-Interscience (2006)

    Google Scholar 

  3. Dayan, P., Hinton, G.E.: Varieties of helmholtz machines. Neural Networks 9, 1385–1403 (1996)

    Article  MATH  Google Scholar 

  4. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  5. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Computation 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  6. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.: The wake-sleep algorithm for unsupervised neural networks. Science 268, 1158–1161 (1995)

    Article  Google Scholar 

  7. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 18(10), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jaakkola, T., Jordan, M.: Improving the mean field approximation via the use of mixture distributions. In: Jordan, M.I. (ed.) Learning in Graphical Models. MIT Press (1998)

    Google Scholar 

  9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  10. Mnih, A., Gregor, K.: Neural variational inference and learning in belief networks. arXiv:1402.0030v1 (cs.LG) (January 2014)

    Google Scholar 

  11. Neal, R.M.: Connectionist learning of belief networks. Artificial Intelligence 56, 71–113 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Neal, R.M., Hinton, G.E.: A view of the em algorithm that justifies incremental, sparse, and other variants. In: Learning in Graphical Models, pp. 355–368. Kluwer Academic Publishers (1998)

    Google Scholar 

  13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufmann (1988)

    Google Scholar 

  14. Salakhutdinov, R., Hinton, G.E.: Deep boltzmann machines. In: AISTATS (2009)

    Google Scholar 

  15. Saul, L.K., Jaakkola, T., Jordan, M.I.: Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research 4, 61–76 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, X., Lyu, S. (2014). Variational EM Learning of DSBNs with Conditional Deep Boltzmann Machines. In: Wermter, S., et al. Artificial Neural Networks and Machine Learning – ICANN 2014. ICANN 2014. Lecture Notes in Computer Science, vol 8681. Springer, Cham. https://doi.org/10.1007/978-3-319-11179-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11179-7_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11178-0

  • Online ISBN: 978-3-319-11179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics