Sparse Single-Hidden Layer Feedforward Network for Mapping Natural Language Questions to SQL Queries

  • Issam H. Laradji
  • Lahouari Ghouti
  • Faisal Saleh
  • Musab A. AlTurki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8681)


Mapping natural language (NL) statements into SQL queries allows users to interact with systems through everyday language. Semantic parsing has seen a growing interest over the past decades. In this paper, we extend single hidden layer feedforward network (SLFN) by adding the Kullback-Liebler (KL) divergence parameter to its objective function. We refer to this algorithm as Sparse SLFN (S-SLFN) which can learn whether an SQL query answers a particular NL question. With Bag of Words (BoW) representing the questions and the queries, the algorithm, by enforcing sparsity, is meant to retain robust features representing informative relationships and structure of the data. Experimental results show that S-SLFN outperforms SLFN and other algorithms for the GeoQueries dataset by a respectable margin.


Single-hidden Layer Feedforward Network (SLFN) Sparsity Semantic Parsing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones, B.K., Johnson, M., Goldwater, S.: Semantic parsing with bayesian tree transducers. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 488–496. Association for Computational Linguistics (2012)Google Scholar
  2. 2.
    Jones, B., Andreas, J., Bauer, D., Hermann, K.M., Knight, K.: Semantics-based machine translation with hyperedge replacement grammars. In: COLING, pp. 1359–1376 (2012)Google Scholar
  3. 3.
    Poon, H., Domingos, P.: Deep learning for semantic parsingGoogle Scholar
  4. 4.
    Giordani, A., Moschitti, A.: Semantic mapping between natural language questions and sql queries via syntactic pairing. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB 2009. LNCS, vol. 5723, pp. 207–221. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ng, A.: Sparse autoencoderGoogle Scholar
  6. 6.
    Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 2(6), 459–473 (1989)CrossRefGoogle Scholar
  7. 7.
    Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic regression. Wiley. com (2013)Google Scholar
  8. 8.
    Hearst, M.A., Dumais, S., Osman, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intelligent Systems and their Applications 13(4), 18–28 (1998)CrossRefGoogle Scholar
  9. 9.
    Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 977–984. ACM (2006)Google Scholar
  10. 10.
    He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering 21(9), 1263–1284 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Issam H. Laradji
    • 1
  • Lahouari Ghouti
    • 1
  • Faisal Saleh
    • 1
  • Musab A. AlTurki
    • 1
  1. 1.Department of Information and Computer ScienceKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations