Skip to main content

Approximate Bayesian Quantile Regression for Panel Data

  • Chapter
  • First Online:
Advances in Complex Data Modeling and Computational Methods in Statistics

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 1957 Accesses

Abstract

We consider a novel approximate Bayesian approach to quantile regression in the presence of panel data, based on the notion of substitution likelihood, introduced by Jeffreys (Theory of Probability, 3rd edn., Clarendon Press, Oxford, 1961) and popularized by Lavine (Biometrika 82:220–222, 1995) and Dunson and Taylor (J Nonparametr Stat 17:385–400, 2005). We provide a sufficient condition which automatically guarantees the property of non crossing condition among conditional quantile functions. Posterior computations are performed via an Adaptive Markov Chain Monte Carlo (AMCMC) algorithm which allows to handle a large number of parameters. The performance of the proposed approach is evaluated with simulated data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Stat. Comput. 18, 343–373 (2008)

    Article  MathSciNet  Google Scholar 

  2. Chernozhukov, V., Hong, H.: An MCMC approach to classical estimation. J. Econom. 115, 293–346 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Doucet, A., Johansen, A.: Particle filtering and smoothing: fifteen years later. In: Crisan, D., Rozovsky, B. (eds.) Handbook of Nonlinear Filtering. Oxford University Press, Oxford (2011)

    Google Scholar 

  4. Dunson, D.B., Taylor, J.A.: Approximate Bayesian inference for quantiles. J. Nonparametr. Stat. 17, 385–400 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gelfand, A.E., Smith, A.F.M., Lee, T.M.: Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Am. Stat. Assoc. 87, 523–532 (1992)

    Article  MathSciNet  Google Scholar 

  6. Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140–154 (2007)

    Article  MATH  Google Scholar 

  7. Geweke, J.: Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics 4, pp. 169–193. Clarendon Press, Oxford (1992)

    Google Scholar 

  8. Hjort, N.L., Petrone, S.: Nonparametric quantile inference using Dirichlet Processes. In: Nair, V. (ed.) Advances in Statistical Modeling and Inference. Festschrift for Kjell Doksum, pp. 463–492. World Scientific, Singapore (2007)

    Chapter  Google Scholar 

  9. Hjort, N.L., Walker, S.G.: Quantile pyramids for Bayesian nonparametrics. Ann. Statist. 37, 105–131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hjort, N.L., Holmes, C., Muller, P., Walker, S.G. (eds.): Bayesian Nonparametrics. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 28. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  11. Jeffreys, H.: Theory of Probability, 3rd edn. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  12. Koenker, R.: Quantile regression for longitudinal data. J. Multivariate Anal. 91, 74–89 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Koenker, R., Hallock, K.F.: Quantile regression. J. Econ. Perspect. 15(4), 143–156 (2001)

    Article  Google Scholar 

  14. Koenker, R., Machado, J.A.F.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kottas, A., Krnjajic, M.: Bayesian semiparametric modelling in quantile regression. Scand. J. Stat. 36, 297–319 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lancaster, T., Jun, S.J.: Bayesian quantile regression methods. J. Appl. Econom. 25, 287–307 (2010)

    Article  MathSciNet  Google Scholar 

  17. Lavine, M.: On an approximate likelihood for quantiles. Biometrika 82, 220–222 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lazar, N.A.: Bayesian empirical likelihood. Biometrika 90, 319–326 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110–120 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Taddy, M. A., Kottas, A.: A Bayesian nonparametric approach to inference for quantile regression. J. Bus. Econom. Stat. 28, 357–369 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  22. Yu, K., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437–447 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yu, K., Van Kerm, P., Zhang, J.: Bayesian quantile regression: an application to the wage distribution in 1990’s Britain. Sankhya 67, 359–377 (2005)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunero Liseo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pulcini, A., Liseo, B. (2015). Approximate Bayesian Quantile Regression for Panel Data. In: Paganoni, A., Secchi, P. (eds) Advances in Complex Data Modeling and Computational Methods in Statistics. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-11149-0_12

Download citation

Publish with us

Policies and ethics