Neural Trade-Offs among Specialist and Generalist Neurons in Pattern Recognition

  • Aarón Montero
  • Ramón Huerta
  • Francisco B. Rodríguez
Part of the Communications in Computer and Information Science book series (CCIS, volume 459)


The olfactory system of insects has two types of neurons based on the conditional response to odorants. Neurons that respond to a few odor classes are called specialists, while generalist neurons code for a wide range of input classes. The function of these neurons is intriguing. Specialist neurons are perhaps essential for odor discrimination, while generalist neurons may extract general properties of the odor space to be able to generalize to new odor spaces. Our goal is to shed light on this issue by analyzing the relevance of these neurons for pattern recognition purposes. The computational model is based on the olfactory system of insects. The model contains an approximation to the antennal lobe (AL) and mushroom body (MB) using a single-hidden-layer neural network. To determine the optimal balance between specialists and generalists we measure the classification error of the pattern recognition task. The mechanism to achieve the optimal balance is synaptic pruning to select the optimal synaptic configuration. The results show that specialists play an important role in odor classification, which is not observed for generalists. Furthermore, proper classification requires low neural activity in Kenyon cells, KC, which is consistent with the sparseness condition observed in MB neurons. Moreover, we also observe that the model is robust against noise to input patterns showing better resilience for low connection probabilities between AL and MB.


Pattern recognition generalist neuron specialist neuron olfactory system neural variability synaptic pruning supervised learning heterogeneous threshold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augasta, M.G., Kathirvalavakumar, T.: A novel pruning algorithm for optimizing feedforward neural network of classification problems. Neural Process Lett. 34, 241–258 (2011)CrossRefGoogle Scholar
  2. 2.
    Bazhenov, M., Huerta, R., Smith, B.H.: A computational framework for understanding decision making through integration of basic learning rules. The Journal of Neuroscience 33(13), 5686–5697 (2013)CrossRefGoogle Scholar
  3. 3.
    Bitterman, M.E., Menzel, R., Fietz, A., Schäfer, S.: Classical conditioning of proboscis extension in honeybees (apis mellifera). J. Comp. Psychol. 97(2), 107–119 (1983)CrossRefGoogle Scholar
  4. 4.
    Christensen, T.A.: Making scents out of spatial and temporal codes in specialist and generalist olfactory networks. Chem. Senses 30, 283–284 (2005)CrossRefGoogle Scholar
  5. 5.
    Doleman, B.J., Lewis, N.S.: Comparison of odour detection thresholds and odour discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sensors and Actuators B 72, 41–50 (2001)CrossRefGoogle Scholar
  6. 6.
    Meilijson, I., Chechick, G., Ruppin, E.: Neuronal regulation: A mechanism for synaptic pruning during brain maturation. Neural Comput. 11(8), 2061–2080 (1999)CrossRefGoogle Scholar
  7. 7.
    Galizia, C.G., McIlwrath, S.L., Menzel, R.: A digital 3D atlas of the honeybee antennal lobe based on optical sections acquired using confocal micoscropy. Cell Tissue Res. 295, 383–394 (1999)CrossRefGoogle Scholar
  8. 8.
    Garcia-Sanchez, M., Huerta, R.: Design parameters of the fan-out phase of sensory systems. J. Comput. Neurosci. 15, 5–17 (2003)CrossRefGoogle Scholar
  9. 9.
    Tan, A., Zhu, Z., Rong, H., Ong, Y.: A fast pruned-extreme learning machine for classification problem. Neurocomputing 72, 359–366 (2008)CrossRefGoogle Scholar
  10. 10.
    Huerta, R.: Learning pattern recognition and decision making in the insect brain. AIP Conference Proceedings 1510, 101 (2013)CrossRefGoogle Scholar
  11. 11.
    Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning classification in the olfactory system of insects. Neural Comput. 16, 1601–1640 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: Explorations in the insect brain. Neural Comput. 21, 2123–2151 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D., Strausfeld, N.J.: The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Drosophila Melanogaster Meigen 5, 52–77 (1998)Google Scholar
  14. 14.
    Kaupp, U.B.: Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Reviews Neuroscience 11, 188–200 (2010)Google Scholar
  15. 15.
    Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L.: Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)CrossRefGoogle Scholar
  16. 16.
    Montero, A., Huerta, R., Rodríguez, F.B.: Neuron threshold variability in an olfactory model improves odorant discrimination. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part I. LNCS, vol. 7930, pp. 16–25. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Montero, A., Huerta, R., Rodriguez, F.B.: Regulation of specialists and generalists by neural variability improves pattern recognition performance. In: Neurocomputing (submitted 2014)Google Scholar
  18. 18.
    Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)CrossRefGoogle Scholar
  19. 19.
    Reed, R.: Pruning algorithms - a survey. IEEE Transactions on Neural Networks 4(5), 740–747 (1993)CrossRefGoogle Scholar
  20. 20.
    Rodríguez, F.B., Huerta, R.: Techniques for temporal detection of neural sensitivity to external stimulation. Biol. Cybern. 100(4), 289–297 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Rodríguez, F.B., Huerta, R., Aylwin, M.: Neural sensitivity to odorants in deprived and normal olfactory bulbs. PLoS ONE 8(4) (2013)Google Scholar
  22. 22.
    Rubin, J.E., Katz, L.C.: Optical imaging of odorant representations in the mammalian olfactory bulb. J. Neurophysiol. 23, 449–511 (1999)Google Scholar
  23. 23.
    Serrano, E., Nowotny, T., Levi, R., Smith, B.H., Huerta, R.: Gain control network conditions in early sensory coding. PLoS Computational Biology 9(7) (2013)Google Scholar
  24. 24.
    Smith, B.H., Wright, G.A., Daly, K.C.: Learning-based recognition and discrimination of floral odors. In: Dudareva, N., Pichersky, E. (eds.) Biology of Floral Scent, ch. 12, pp. 263–295. CRC Press (2005)Google Scholar
  25. 25.
    Stopfer, M., Jayaraman, V., Laurent, G.: Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003)CrossRefGoogle Scholar
  26. 26.
    Strube-Bloss, M.F., Nawrot, M.P., Menzel, R.: Mushroom body output neurons encode odor-reward associations. J. Neurosci. 31(8), 3129–3140 (2011)CrossRefGoogle Scholar
  27. 27.
    Wilson, R.I., Turner, G.C., Laurent, G.: Transformation of olfactory representations in the drosophila antennal lobe. Science 303(5656), 366–370 (2004)CrossRefGoogle Scholar
  28. 28.
    Zavada, A., Buckley, C.L., Martinez, D., Rospars, J.-P., Nowotny, T.: Competition-based model of pheromone component ratio detection in the moth. PLoS One 6(2), e16308 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aarón Montero
    • 1
  • Ramón Huerta
    • 1
    • 2
  • Francisco B. Rodríguez
    • 1
  1. 1.Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática. Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain
  2. 2.BioCircuits InstituteUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations