Classification of Database by Using Parallelization of Algorithms Third Generation in a GPU

  • Israel Tabarez Paz
  • Neil Hernández Gress
  • Miguel González Mendoza
Part of the Communications in Computer and Information Science book series (CCIS, volume 459)


This manuscript is focused on the efficiency analysis of Artificial Neural Networks (ANN) that belongs to the third generation, which are Spiking Neural Networks (SNN) and Support Vector Machine (SVM). The main issue of scientific community have been to improve the efficiency of ANN. So, we applied architecture GPU (Graphical Processing Unit) from NVIDIA model GeForce 9400M. On the other hand, the results of QP method for SVM depends on computational complexity of the algorithm, which is proportional to the volume and attributes of the data. Moreover, SNN was selected because it is a method that has not been explored fully. Despite the economic cost is very high in parallel programming, this is compensated with the large number of real applications such as clustering and pattern recognition. In the state of the art, nobody of authors has coded Quadratic Programming (QP) of SVM in a GPU. In case of SNN, it has been developed by using a specific software as MATLAB, FPGA or sequential circuits but it have never been coded in a GPU. Finally, it is necessary to reduce the grade of parallelization caused by limitations of hardware.


GPU CPU Artificial Neural Networks Spiking Neural Networks Support Vector Machine Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, S., Kohler, S., Doll, K., Brunsmann, U.: Fpga-gpu architecture for kernel svm pedestrian detection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 61–68. IEEE (2010)Google Scholar
  2. 2.
    Bhuiyan, M.A., Pallipuram, V.K., Smith, M.C.: Acceleration of spiking neural networks in emerging multi-core and gpu architectures. In: 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8 (April 2010)Google Scholar
  3. 3.
    Bohte, S.M.: Spiking neural networks. Unpublished doctoral dissertation, Centre for Mathematics and Computer Science, Amsterdam (2003)Google Scholar
  4. 4.
    Bohte, S.M., Kok, J.N., La Poutre, H.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1), 17–37 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Booij, O.: Temporal pattern classification using spiking neural networks. Unpublished master’s thesis, University of Amsterdam (August 2004)Google Scholar
  6. 6.
    Carpenter, A.: Cusvm: A cuda implementation of support vector classification and regression (2009),
  7. 7.
    Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training and classification on graphics processors. In: Proceeedings of the 25th Intenational Conference on Machine Learning, pp. 104–111 (2008)Google Scholar
  8. 8.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  9. 9.
    Fidjeland, A.K., Roesch, E.B., Shanahan, M.P., Luk, W.: Nemo: A platform for neural modelling of spiking neurons using gpus. In: 20th IEEE International Conference on Application-specific Systems, Architectures and Processors, ASAP 2009, pp. 137–144 (July 2009)Google Scholar
  10. 10.
    Herrero-Lopez, S., Williams, J.R., Sanchez, A.: Parallel multiclass classification using svms on gpus. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, pp. 2–11. ACM (2010)Google Scholar
  11. 11.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology 117(4), 500 (1952)Google Scholar
  12. 12.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Izhikevich, E.M.: Hybrid spiking models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368(1930), 5061–5070 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Laurene, F.: Fundamentals of Neural Networks, Architecture, Algorithms, and Applications. Prentice Halls (1994)Google Scholar
  15. 15.
    Li, Q., Salman, R., Kecman, V.: An intelligent system for accelerating parallel svm classification problems on large datasets using gpu, pp. 1131–1135Google Scholar
  16. 16.
    Lin, T.-K., Chien, S.-Y.: Support vector machines on gpu with sparse matrix format. In: 2010 Ninth International Conference on Machine Learning and Applications (December 2010), pp. 313–318 (2010)Google Scholar
  17. 17.
    Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., Veidenbaum, A.V.: Efficient simulation of large-scale spiking neural networks using cuda graphics processors. Neural Networks, 791–800 (June 2009)Google Scholar
  18. 18.
    Nuno-Maganda, M.A., Arias-Estrada, M.O.: Real-time fpga-based architecture for bicubic interpolation: an application for digital image scaling. In: International Conference on Reconfigurable Computing and FPGAs, ReConFig 2005, p. 8. IEEE (2005)Google Scholar
  19. 19.
    NVIDIA. NVIDIA CUDA C BEST PRACTICES GUIDE DG –05603–001v5.0, dg –05603–001v5.0 ed. (May 2012)Google Scholar
  20. 20.
    Nowotny, T., Huerta, R., Abarbanel, H.D., Rabinovich, M.I.: Self-organization in the olfactory system: one shot odor recognition in insects. Biological Cybernetics 93(6), 436–446 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Papadonikolakis, M., Bouganis, C.-S., Constantinides, G.: Performance comparison of gpu and fpga architectures for the svm training problem. In: International Conference on Field Programmable Technology, FPT 2009, pp. 388–391. IEEE (2009)Google Scholar
  22. 22.
    Pavlidis, N., Tasoulis, O., Plagianakos, V.P., Nikiforidis, G., Vrahatis, M.: Spiking neural network training using evolutionary algorithms. In: 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 4, pp. 2190–2194. IEEE (August 2005)Google Scholar
  23. 23.
    Platt, J.C.: Sequiential minimal optimization: A fast algorithm for tarining support vector machinesGoogle Scholar
  24. 24.
    Prabhu, R.D.: Somgpu: An unsupervised pattern classifier on graphical processing unit. In: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 1011–1018, 1–6 (June 2008)Google Scholar
  25. 25.
    Scanzio, S., Cumani, S., Gemello, R., Mana, F., Laface, P.: Parallel implementation of artificial neural network training. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 4902–4905 (March 2010)Google Scholar
  26. 26.
    Schrauwen, B., Van Campenhout, J.: Improving spikeprop: enhancements to an error-backpropagation rule for spiking neural networks. In: Proceedings of the 15th ProRISC Workshop, vol. 11 (2004)Google Scholar
  27. 27.
    Stewart, R.D., Bair, W.: Spiking neural network simulation: numerical integration with the parker–sochacki method. Journal of Computational Neuroscience 27(1), 115–133 (2009)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Thomas, D.B., Luk, W.: Fpga accelerated simulation of biologically plausible spiking neural networks. In: 17th IEEE Symposium on Field Programmable Custom Computing Machines, FCCM 2009, pp. 45–52 (2009)Google Scholar
  29. 29.
    Yudanov, D., Shaaban, M., Melton, R., Reznik, L.: Gpu-based simulation of spiking neural networks with real-time performance & high accuracy. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (February 2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Israel Tabarez Paz
    • 1
  • Neil Hernández Gress
    • 2
  • Miguel González Mendoza
    • 2
  1. 1.Universidad Autónoma del Estado de MéxicoAtizapán de ZaragozaMéxico
  2. 2.Tecnológico de Monterrey, Campus Estado de MéxicoAtizapán de ZaragoraMéxico

Personalised recommendations