Remarks on Computational Facial Expression Recognition from HOG Features Using Quaternion Multi-layer Neural Network

  • Kazuhiko Takahashi
  • Sae Takahashi
  • Yunduan Cui
  • Masafumi Hashimoto
Part of the Communications in Computer and Information Science book series (CCIS, volume 459)


Facial expression recognition is an important technology in human-computer interaction. This study investigates a method for facial expression recognition using quaternion neural networks. A multi-layer quaternion neural network that conducts its learning using a quaternion back-propagation algorithm is employed to design the facial expression recognition system. The input feature vector of the recognition system is composed of histograms of oriented gradients calculated from an input facial expression image, and the output vector of the quaternion neural network indicates the class of facial expressions such as happiness, anger, sadness, fear, disgust, surprise and neutral. Computational experimental results show the feasibility of the proposed method for recognising human facial expressions.


Quaternion neural network Facial expression recognition Histograms of oriented gradients Image processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tolba, A.S., El-Baz, A.H., El-Harby, A.A.: Face Recognition: A Literature Review. International Journal of Information and Communication Engineering 2, 88–103 (2006)Google Scholar
  2. 2.
    Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(1), 39–58 (2009)CrossRefGoogle Scholar
  3. 3.
    Calvo, R.A., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactions on Affective Computing 1(1), 18–37 (2010)CrossRefGoogle Scholar
  4. 4.
    Sandbach, G., Zafeiriou, S., Pantic, M., Yin, L.: Static and Dynamic 3D Facial Expression Recognition: A Comprehensive Survey. Image and Vision Computing 30, 683–697 (2012)CrossRefGoogle Scholar
  5. 5.
    Sommer, G. (ed.): Geometric Computing with Clifford Algebra. Springer (2001)Google Scholar
  6. 6.
    Buchholz, A., Sommer, G.: On Clifford Neurons and Clifford Multi-Layer Perceptrons. Neural Networks 21, 925–935 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Nitta, T. (ed.): Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. Information Science Publishing (2009)Google Scholar
  8. 8.
    Kuroe, Y.: Models of Clifford Recurrent Neural Networks and Their Dynamics. In: Proceedings of International Joint Conference on Neural Networks, pp. 1035–1041 (2011)Google Scholar
  9. 9.
    Kusamichi, H., Isokawa, T., Matsui, N., Ogawa, Y., Maeda, K.: A New Scheme Color Night Vision by Quaternion Neural Network. In: Proceedings of the 2nd International Conference on Autonomous Robots and Agents, pp. 101–106 (2004)Google Scholar
  10. 10.
    Arena, P., Caponetto, R., Fortuna, L., Muscato, G., Xibilia, M.G.: Quaternionic Multilayer Perceptrons for Chaotic Time Series Prediction. IEICE Transactions on Fundamentals E79-A(10), 1682–1688 (1996)Google Scholar
  11. 11.
    Ujang, B.C., Took, C.C., Mandic, D.P.: Quaternion-Valued Nonlinear Adaptive Filtering. IEEE Transactions on Neural Networks 22(8), 1193–1206 (2011)CrossRefGoogle Scholar
  12. 12.
    Iura, T., Ogawa, T.: Quaternion Neural Network Inversion for Solving Inverse Problems. In: Proceedings of SICE Annual Conference 2012, pp. 1802–1805 (2012)Google Scholar
  13. 13.
    Cui, Y., Takahashi, K., Hashimoto, M.: Remarks on Quaternion Neural Networks with Application to Robot Control. In: Proceedings of SICE 2013 International Conference on Instrumentation, Control, Information Technology and System Integration, pp. 1381–1386 (2013)Google Scholar
  14. 14.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)Google Scholar
  15. 15.
    Onishi, K., Takiguchi, T., Ariki, Y.: 3D Human Posture Estimation Using the HOG Features from Monocular Image. In: Proceedings of 19th International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  16. 16.
  17. 17.
    Ekman, P., Friesen, W.V.: Unmasking The Face. Prentice-Hall, Inc., Englewood Cliffs (1975)Google Scholar
  18. 18.
    Lyons, M.J., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding Facial Expressions with Gabor Wavelets. In: Proceedings of 3rd IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205 (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kazuhiko Takahashi
    • 1
  • Sae Takahashi
    • 1
  • Yunduan Cui
    • 2
  • Masafumi Hashimoto
    • 3
  1. 1.Information Systems DesignDoshisha UniversityKyotoJapan
  2. 2.Graduate School of Doshisha UniversityKyotoJapan
  3. 3.Intelligent Information Engineering and ScienceDoshisha UniversityKyotoJapan

Personalised recommendations