Tiling of Satellite Images to Capture an Island Object

  • Ahmet Sayar
  • Süleyman Eken
  • Umit Mert
Part of the Communications in Computer and Information Science book series (CCIS, volume 459)


This study proposes a novel tiling approach to capture an image of an entire object. Multi-spectral and multi-temporal satellite images are obtained a priori, and these individual image pieces can then be joined together at a later date to form an image of the entire object. The effectiveness of the proposed technique has been studied by tiling partially overlapping satellite mosaic images of the Island of Cyprus. The images were captured by the recently-launched LandSat-8 satellite.


Satellite image tiling image mosaicking LandSat-8 lighten method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys (CSUR) 24, 325–376 (1992)CrossRefGoogle Scholar
  2. 2.
    Yi, Z., Zhiguo, C., Yang, X.: Multi-spectral remote image registration based on SIFT. Electronics Letters 44, 107–108 (2008)CrossRefGoogle Scholar
  3. 3.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Song, Z.L., Zhang, J.: Remote sensing image registration based on retrofitted SURF algorithm and trajectories generated from Lissajous figures. IEEE Geoscience and Remote Sensing Letters 7, 491–495 (2010)CrossRefGoogle Scholar
  6. 6.
    Lee, S.R.: A coarse-to-fine approach for remote-sensing image registration based on a local method. International Journal on Smart Sensing and Intelligent Systems 3, 690–702 (2010)Google Scholar
  7. 7.
    Wahed, M., El-tawel, G.S., El-karim, A.G.: Automatic Image Registration Technique of Remote Sensing Images. International Journal of Advanced Computer Science and Applications 4, 177–187 (2013)CrossRefGoogle Scholar
  8. 8.
    El-Rube, I., Sharkas, M., Salman, A., Salem, A.: Automatic Selection of Control Points for Remote Sensing Image Registration Based on Multi-Scale SIFT. In: International Conference on Signal, Image Processing and Applications (SIA), vol. 21, pp. 46–50. IACSIT Press, Chennai (2011)Google Scholar
  9. 9.
    Manera, J.F., Rodrigez, L., Delrieux, C., Coppo, R.: Aerial image acquisition and processing for remote sensing. Journal of Computer Science & Technology 10, 97–103 (2010)Google Scholar
  10. 10.
    Sayar, A., Eken, S., Mert, U.: Registering landsat-8 mosaic images: A case study on the Marmara Sea. In: Processing of 10th International Conference on Electronics, Computer and Computation (ICECCO), Ankara, Turkey, pp. 375–377 (2013)Google Scholar
  11. 11.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Graphics and Image Processing 24, 381–395 (1981)MathSciNetGoogle Scholar
  12. 12.
    Davis, M.H., Khotanzad, A., Flaming, D.P.: 3D image matching using radial basis function neural network. In: Processing of WCNN 1996: World Congress on Neural Networks, pp. 1174–1179 (1996)Google Scholar
  13. 13.
    Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with compact support for elastic registration of medical images. Image and Vision Computing 19, 87–96 (2001)CrossRefGoogle Scholar
  14. 14.
    Sabisch, T., Ferguson, A., Bolouri, H.: Automatic registration of complex images using a self organizing neural system. In: Proc. of 1998 Int. Joint Conf. on Neural Networks, pp. 165–170 (1998)Google Scholar
  15. 15.
    Banerjee, S., Majumdar, D.D.: Shape matching in multimodal medical images using point landmarks with Hopfield net. Neurocomputing 30, 103–106 (2000)CrossRefGoogle Scholar
  16. 16.
    Liua, H., Yan, J., Zhang, D.: Three-dimensional surface registration: A neural network strategy. Neurocomputing 70, 597–602 (2006)CrossRefGoogle Scholar
  17. 17.
    Li, M., Cai, W., Tan, Z.: A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recognition Letters 27(16), 1948–1956 (2006)CrossRefGoogle Scholar
  18. 18.
    Shang, L., Cheng Lv, J., Yi, Z.: Rigid medical image registration using PCA neural network. Neurocomputing 69, 1717–1722 (2006)CrossRefGoogle Scholar
  19. 19.
    Zhang, J., Ge, Y., Ong, S.H., Chui, C.K., Teoh, S.H., Yan, C.H.: Rapid surface registration of 3D volumes using a neural network approach. Image and Vision Computing 26, 201–210 (2007)CrossRefGoogle Scholar
  20. 20.
    Sharma, S., Tuli, H., Nagar, S., Dhir, T., Tayal, S.: Using Self-Organizing Neural Network for Image Mosaicing. Advanced Applications of Electrical Engineering, pp. 76–80 (2009)Google Scholar
  21. 21.
    Zagorchev, L., Goshtasby, A.: A Comparative Study of Transformation Functions for Nonrigid Image Registration. IEEE Trans. Image Processing 15(3), 529–538 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ahmet Sayar
    • 1
  • Süleyman Eken
    • 1
  • Umit Mert
    • 2
  1. 1.Computer Engineering DepartmentKocaeli UniversityIzmitTurkey
  2. 2.Information Technologies Institute, The Scientific and Technological Research Council of TurkeyGebzeTurkey

Personalised recommendations