A New User Similarity Computation Method for Collaborative Filtering Using Artificial Neural Network

  • Noman Bin Mannan
  • Sheikh Muhammad Sarwar
  • Najeeb Elahi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 459)


A User-User Collaborative Filtering (CF) algorithm predicts the rating of a particular item for a given user based on the judgment of other users, who are similar to the given user. Hence, measuring similarity between two users turns out to be a crucial and challenging task as the similarity function is the core component of the item rating prediction function for a particular user. In this paper, we investigate the effectiveness of a multilayer feed-forward artificial neural network as a similarity measurement function. We model similarity between two users as a function that consists of a set of adaptive weights and attempt to train a neural network to optimize the weights. Specifically, our contribution lies in designing an error function for the neural network, which optimizes the network and sets weights in such a way that enables the neural network to produce a reasonable similarity value between two users as its output. Through experimentation on Movielens dataset, we conclude that neural network, as a similarity function, gains more accuracy and coverage compared to the Genetic Algorithm (GA) based similarity architecture proposed by Bobadilla et al.


Collaborative filtering Recommender System Similarity measures Artificial Neural Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krulwich, B.: Lifestyle finder: Intelligent user profiling using large-scale demographic data. AI Magazine 18(2), 37 (1997)Google Scholar
  2. 2.
    Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the Twelfth International Conference on Machine Learning, Citeseer (1995)Google Scholar
  3. 3.
    Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: Toward a personal recommender system. ACM Transactions on Information Systems (TOIS) 22(3), 437–476 (2004)CrossRefGoogle Scholar
  4. 4.
    Wei, K., Huang, J., Fu, S.: A survey of e-commerce recommender systems. In: 2007 International Conference on Service Systems and Service Management, pp. 1–5. IEEE (2007)Google Scholar
  5. 5.
    Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Knowledge-Based Systems 22(4), 261–265 (2009)CrossRefGoogle Scholar
  6. 6.
    Porcel, C., Herrera-Viedma, E.: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries. Knowledge-Based Systems 23(1), 32–39 (2010)CrossRefGoogle Scholar
  7. 7.
    Mitchell, T.M.: Machine learning, vol. 45. McGraw Hill, Burr Ridge (1997)zbMATHGoogle Scholar
  8. 8.
    Herlocker, J.L., Konstan, J.A., Riedl, J.T., Terveen, L.G.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)CrossRefGoogle Scholar
  9. 9.
    Manolopoulus, Y., Nanopoulus, A., Papadopoulus, A.N., Symeonidis, P.: Collaborative recommender systems: combining effectiveness and efficiency. Exp. Syst. Appl. 34(4), 2995–3013 (2008)CrossRefGoogle Scholar
  10. 10.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  11. 11.
    Bobadilla, J., Serradilla, F., Bernal, J.: A new collaborative filtering metric that improves the behavior of recommender systems. Knowl. Based Syst. 23(6), 520–528 (2010)CrossRefGoogle Scholar
  12. 12.
    Ingoo, H., Kyong, J.O., Tae, H.R.: The collaborative filtering recommendation based on SOM cluster-indexing CBR. Exp. Syst. Appl. 25, 413–423 (2003)CrossRefGoogle Scholar
  13. 13.
    Bobadilla, J., Ortega, F., Hernando, A., Alcalá, J.: Improving collaborative filtering recommender system results and performance using genetic algorithms. Knowl. Based Syst. 24(8), 1310–1316 (2011)CrossRefGoogle Scholar
  14. 14.
    Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning (1989) ISBN: 0-201-15767-5Google Scholar
  15. 15.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  16. 16.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, New York, NY, USA, pp. 175–186 (1994)Google Scholar
  17. 17.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)CrossRefGoogle Scholar
  19. 19.
    Karypis, G.: Evaluation of item-based top-N recommendation algorithms. In: Proceedings of the International Conference on Information and Knowledge Management (CIKM 2001), Atlanta, Ga, USA, pp. 247–254 (November 2001)Google Scholar
  20. 20.
    Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Noman Bin Mannan
    • 1
  • Sheikh Muhammad Sarwar
    • 1
  • Najeeb Elahi
    • 2
  1. 1.Institute of Information TechnologyUniversity of DhakaDhakaBangladesh
  2. 2.UiT The Arctic University of NorwayNorway

Personalised recommendations