Advertisement

Automatic Screening and Classification of Diabetic Retinopathy Fundus Images

  • Sarni Suhaila Rahim
  • Vasile Palade
  • James Shuttleworth
  • Chrisina Jayne
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 459)

Abstract

Eye screening is essential for the early detection and treatment of the diabetic retinopathy. This paper presents an automatic screening system for diabetic retinopathy to be used in the field of retinal ophthalmology. The paper first explores the existing systems and applications related to diabetic retinopathy screening and detection methods that have been previously reported in the literature. The proposed ophthalmic decision support system consists of an automatic acquisition, screening and classification of diabetic retinopathy fundus images, which will assist in the detection and management of the diabetic retinopathy. The developed system contains four main parts, namely the image acquisition, the image preprocessing, the feature extraction, and the classification by using several machine learning techniques.

Keywords

Diabetic Retinopathy Eye Screening Eye Fundus Images Image Processing Classifiers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duin, R.P.W., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D.M.J., Verzakov, S.: PRTools4.1, A Matlab Toolbox for Pattern Recognition, Delft University of Technology (2007)Google Scholar
  2. 2.
  3. 3.
    Jelinek, H.J., Cree, M.J., Worsley, D., Luckie, A., Nixon, P.: An automated microaneursym detector as a tool for identification of diabetic retinopathy in rural optometric practice. Clinical and Experimental Optometry 89(5), 299–305 (2006)CrossRefGoogle Scholar
  4. 4.
    Joshi, S., Karule, P.T.: Retinal blood vessel segmentation. International Journal of Engineering and Innovative Technology 1(3), 175–178 (2012)Google Scholar
  5. 5.
    Karasulu, B.: Automated extraction of retinal blood vessels: a software implementation. European Scientific Journal 8(30), 47–57 (2012)Google Scholar
  6. 6.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Uusitalo, H., Kalviainen, H., Pietila, J.: DIARETDB0: Evaluation Database and Methodology for Diabetic Retinopathy Algorithms, Technical report (2006)Google Scholar
  7. 7.
    Larsen, N., Godt, J., Grunkin, M., Lund-Andersen, H., Larsen, M.: Automated detection of diabetic retinopathy in a fundus photographic screening population. Investigative Ophthalmology and Visual Science 44(2), 767–771 (2003)CrossRefGoogle Scholar
  8. 8.
    Perumalsamy, N., Sathya, S., Prasad, N.M., Ramasamy, K.: Software for reading and grading diabetic retinopathy. Aravind Diabetic Retinopathy Screening 3.0 Diabetes Care 30(9), 2302–2306 (2007)Google Scholar
  9. 9.
    Philip, S., Fleming, A.D., Goatman, K.A., Fonseca, S., Mcnamee, P., Scotland, G.S., Sharp, P.F., Olson, J.A.: The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. British Journal Ophthalmol. 91, 1512–1517 (2007)CrossRefGoogle Scholar
  10. 10.
    Priya, R., Aruna, P.: Review of automated diagnosis of diabetic retinopathy using the support vector machine. International Journal of Applied Engineering Research 1(4), 844–863 (2011)Google Scholar
  11. 11.
    Priya, R., Aruna, P.: SVM and neural network based diagnosis of diabetic retinopathy. International Journal of Computer Applications 41(1), 6–12 (2012)CrossRefGoogle Scholar
  12. 12.
    Priya, R., Aruna, P.: Diagnosis of diabetic retinopathy using machine learning techniques. Journal on Soft Computing 3(4), 563–575 (2013)Google Scholar
  13. 13.
    Priya, R., Aruna, P., Suriya, R.: Image analysis technique for detecting diabetic retinopathy. International Journal of Computer Applications 1, 34–38 (2013)Google Scholar
  14. 14.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage Learning. United States of America (2008)Google Scholar
  15. 15.
    Taylor, R., Batey, D.: Handbook of retinal screening in diabetes: diagnosis and management. John Wiley & Sons, Ltd., England (2012)Google Scholar
  16. 16.
    Wild, S., Roglic, G., Green, A., Sicree, R., King, H.: Global prevalence of diabetes estimates: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5), 1047–1053 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sarni Suhaila Rahim
    • 1
  • Vasile Palade
    • 1
  • James Shuttleworth
    • 1
  • Chrisina Jayne
    • 1
  1. 1.Faculty of Engineering and ComputingCoventry UniversityCoventryUnited Kingdom

Personalised recommendations